a2 United States Patent

Wolrich et al.

US009436435B2

10) Patent No.: US 9,436,435 B2
45) Date of Patent: Sep. 6, 2016

(54) APPARATUS AND METHOD FOR VECTOR

(735)

(73)

")

@

(22)

(86)

87

(65)

(1)

(52)

INSTRUCTIONS FOR LARGE INTEGER
ARITHMETIC

Inventors: Gilbert M. Wolrich, Framingham, MA
(US); Kirk S. Yap, Framingham, MA

Assignee:

Notice:

Appl. No.:

PCT Filed:

PCT No.:

(US); James

D. Guilford,

Northborough, MA (US); Erdinc

Ozturk, Istonbul (TR); Vinodh Gopal,

Westborough, MA (US); Wajdi K.

Feghali, Boston, MA (US); Sean M.
Gulley, Boston, MA (US); Martin G.

Dixon, Portland, OR (US)

Us)

U.S.C. 154(b) by 133 days.

§ 371 (e)(D),

(2), (4) Date:

PCT Pub. No.:

Dec. 23,

Feb. 26,

13/996,529

2011

PCT/US2011/067165

2014

WO02013/095629

PCT Pub. Date: Jun. 27, 2013

US 2014/0164467 Al Jun. 12, 2014

Int. CL.

GO6F 7/525 (2006.01)

GO6F 7/57 (2006.01)

GO6F 9/30 (2006.01)

GO6F 9/38 (2006.01)

U.S. CL

CPC ... GO6F 7/57 (2013.01); GOGF 9/3001

Prior Publication Data

Intel Corporation, Santa Clara, CA

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

(2013.01); GOGF 930036 (2013.01); GO6F

41
412
413
414
415
416
417
418

421
422

9/3893 (2013.01)

Ve 401

R_Lo « VPMUL_LO A[OLB[O]
S[] « AddR_Lo; S[0]

R_Hi + VPMUL_HI AJ0]:B[0]
R_Lo + VPMUL_LO Al0JB[1]
S[1] * AddR_Lo;R_Hi S[1]
R_Hi + VPMUL_HI AJ0]B[1]
R_Lo + VPMUL_LO Al0}B[2)
52| « AddR_Lo;R_H: S[2]

RLo + VPMUL_LO ADJB[T]
ST« AddR_Lo;R_H: S[T]
RHi + VPMUL_HIAQJBIT]
S8+ AddR_H; S[8]

} 420

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,121,431 A 6/1992 Wiener
5,457,804 A * 10/1995 Ohtomo GOG6F 7/5324
708/523

(Continued)

FOREIGN PATENT DOCUMENTS

CN 101271570 A 9/2008
OTHER PUBLICATIONS

PCT Notification concerning Transmittal of International Prelimi-
nary Report on Patentability (Chapter I of the Patent Coopertation
Treaty) for PCT Counterpart Application No. PCT/US2011/067165,
6 pgs., (Jul. 3, 2014).

(Continued)

Primary Examiner — David H Malzahn
(74) Attorney, Agent, or Firm — Nicholson De Vos Webster
& Elliott, LLP

(57) ABSTRACT

An apparatus is described that includes a semiconductor
chip having an instruction execution pipeline having one or
more execution units with respective logic circuitry to: a)
execute a first instruction that multiplies a first input operand
and a second input operand and presents a lower portion of
the result, where, the first and second input operands are
respective elements of first and second input vectors; b)
execute a second instruction that multiplies a first input
operand and a second input operand and presents an upper
portion of the result, where, the first and second input
operands are respective elements of first and second input
vectors; and, ¢) execute an add instruction where a carry
term of the add instruction’s adding is recorded in a mask
register.

22 Claims, 26 Drawing Sheets

S0
9

Hij2 |Lo|2
Hi3 | Lo|3
Hi} [Lod

412
415

Hf 6] Lo|B

[l7 [l —

418

US 9,436,435 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

6,370,559 Bl 4/2002 Hoffman et al.
6,530,011 B1* 3/2003 Choquette

6,598,064 Bl 7/2003 Green
8,019,805 B1* 9/2011 Sarma

8,549,264 B2 10/2013 Gopal et al.
2006/0253520 Al* 11/2006 Tran

2006/0253522 Al 11/2006 Dror
2014/0164467 Al* 6/2014 Wolrich

.. GO6F 7/483
708/236

GOG6F 7/4876
708/503

GO6F 7/5318
708/607

GO6F 9/30036
708/523

OTHER PUBLICATIONS

“Notification of Transmittal of the International Search Report and
the Written Opinion of the International Searching Authority”,
Application No. PCT/US2011/067165, mailed Aug. 28, 2012, 9
pages.

Office action with English translation from Taiwan Patent Applica-
tion No. 101148095, mailed Feb. 10, 2015, 4 pages.

Office action with English translation from Chinese Patent Appli-
cation No. 201180075776.4, mailed Nov. 18, 2015, 19 pages.

* cited by examiner

US 9,436,435 B2

~

Sheet 1 of 26

Sep. 6, 2016

10 39VdS .
Y3LSIOT 3 E
¥OL93A

- /
30VdS AN |
¥3LSI9TY 207
¥OLO3A J0VdS
MSVIN WALSIOY
49
A
A _
J_
Y A 4
1 | |
AT L _
17601 1 N !
o0 —L— 3 L 17901 |
! : _ _ 30003Q
! ! HOL3 v gy holay
T I viva |
NT501 ! i | NOILONYLSNI
N €0} v—— | NP0l ! ~
MoveALMM | NOILNOIX3 ! i N

U.S. Patent

U.S. Patent Sep. 6, 2016

Sheet 2 of 26

US 9,436,435 B2

AND

FIG. 2A

A D

B, E

AND

FIG. 2B

C.F

US 9,436,435 B2

Sheet 3 of 26

Sep. 6, 2016

U.S. Patent

[o:zlaxlzl¥
[o:zlax[T1]V
[o:z]lax[@]¥

ve 'Old

8 X 99L =
€ X G9L =
7 X Q9L =

0T08¢9

0CT9|«2c0E

G 6C C| « acoe
090 ¢ [_<«ezoe

pE8 X €0¢
S9L

/Sm

¢0¢

U.S. Patent Sep. 6, 2016 Sheet 4 of 26

302a — A[0]*B[2:0] =765
x4

304a — 20 | = A[0]*B[0]

304b — | 24| =A[0]*B[1]

304c —| 28 = A[0]* B[2]

3060

302b —» A[1]*B[2:0]=765

x3
= A[1]* B[0]
= A[1]* B[1]
= A[1]* B[2]
2295

302c — A[2]*B[2:0]=765
x8

40 | = Al2]*B[0]

48 [= A[2]*B[1]

56 =A[2]*B[2]

6120

FIG. 3B

US 9,436,435 B2

305d
305¢
/. ~305b

w0 || [l— 305

2295

308
+1
e /
+1 40
48
56

6120

U.S. Patent Sep. 6, 2016 Sheet 5 of 26 US 9,436,435 B2

316
+1 /J
000400[0] ~
e 320 1
310 —» MULTIPLY A[Q],B[0] = M1 P 0
311 —» MULTIPLY A[0],B[1] = M2 24
312 —» ADD S[0], MA1[0] = S[0]
330 < 313 —» ADD S[], M1[1], M2[0] = S[1]
314 —» MULTIPLY A[0]B[2] =M1 28 %3312
315 —» ADD S[2], M2[1], M1[0] = S[2] g’\: 315
317 —» ADD S[3], M1[1], CARRY = S[3] 3%
. Vo]
0003060
MULTIPLY A[1],B[0] = M1 | 5 3203
MULTIPLY A[1],B[1] = M2 | 8
ADD S[1], M1[0] = S[1]
ADD S[2], M1[1], M2[0] = S[2]
MULTIPLY A[1],B[2] = M1 21
ADD S[3], M2[1], M1[0] = S[3]
ADD S[3], M1[1] ey v v
v \¢ \
0026010
MULTIPLY A[2],B[0] = M1 T0 a3
MULTIPLY A[2],B[1] = M2 4 8
ADD S[2], M1[0] = S[2]
ADD S[3], M1[1], M2[0] = S[3] I
MULTIPLY A[2],B[2] = M1 b6
ADD S[4], M2[1], = S[4]
ADD S[5], M1[1]
0638010

FIG. 3C o204

US 9,436,435 B2

Sheet 6 of 26

Sep. 6, 2016

U.S. Patent

lols [gls
((
q [l HYPRY » [8lS
T T T O e | [glolv HIANdA » HY
[ZISH Y 0T HpPRY » [/
Mw;\\;/r\ L[07] LH (g0l 0T INWdA + 0T d
P 901 [9fH .
S [0 o[o .
chy wlo1| ol [ZlsHyoTy PRy » [ZIS
- [Zlg'l0lv OT INWdA » 0T ¥
. M [0l HINWdA » H Y
¢[orf ¢ [LSIH Y 0T HPPY » [1IS
1|1 H 0Zy [L]g:l0lv 0T INdA » 0T ¥
o lolg{olY IHINWdA » 1H ¥
[0lS 0T Y pPY » [0IS
[olg[olv 0T 1NWdA * 0T ¥
¢ £ é\.
S lds [gls

44
4y

8Ly
LIy
Oy
Gly
1424
ELy
cly
Ly

U.S. Patent Sep. 6, 2016 Sheet 7 of 26 US 9,436,435 B2

R_Hi VPMUL_HI A[O]; B[]
R Lo VPMUL_LO A[0]; B[j+1]
S[+11, k ADD R_Lo; R_Hi; S[j+1]; k
\ 431 \ 432 \ 430

FIG. 4B

U.S. Patent Sep. 6, 2016 Sheet 8 of 26

US 9,436,435 B2

.
=
o~
N

N
[

- e.g., 64 L e.g., 64

MULTIPLIER
450

~ __ e.g., 64

v
N

V_\ N

e.g., 64 —<
e VY Lo
HI/LO
453
A A Y Y

454 <

o

456 —

FIG. 4C

U.S. Patent Sep. 6, 2016 Sheet 9 of 26 US 9,436,435 B2

461 462 463 465
FRCOM
MASK
REGISTER
SPACE
A \ 2 4 h 4
CARRY_IN
ADDER
464
CARRY_OUT
466
v /
TO MASK
REGISTER <
SPACE
467
v / h 4

FIG. 4D

US 9,436,435 B2

Sheet 10 of 26

Sep. 6, 2016

U.S. Patent

[ols [gls
((
A A A A
01|
_ _ A
P . 907 |gH
Ls . gor|sm| 4 o
S~
e o] ¥ H
¢ 01| ¢
701 7 H
L OT| 1 H .
gpilegm| 1 ‘
A
ns ——1 [ss
¢ ¢
[ols [gls

[elsIH ¥ aay > gls
[Zls‘0T¥aay » (S

[ZlS IH Y Py » [Z]S
[lSoT Py » [1IS
[L1golv IHINIWdA » H Y
[L1gilolv 0T 1nWdA » 01°Y
LIS H Y PPy » [LIS
[0S 0Ty PPy » [0IS
[olg:(olv IH INNdA » H Y
[ola:[loly 0T ININdA > 0T

8lG
LS
LG
Glg
142"
€LG
clG
LG

U.S. Patent Sep. 6, 2016 Sheet 11 of 26 US 9,436,435 B2

RLo «<—— VPMUL_LO A[0]:BJj]
R Hi +— VPMUL_HIAJ0];BJi]
S[K&@ <— ADDR_Lo; S[j]; K@
S[+1]:K1 «—— ADD R_Hi; S[j+1]; K1

FIG. 5B

U.S. Patent Sep. 6, 2016 Sheet 12 of 26 US 9,436,435 B2
562 563 565
N N N
FROM
MASK
REGISTER
! v 1 SPACE
CARRY IN
ADDER
564
TO MASK CARRY_OUT
REGISTER
SPACE 566
/ h 4 /
564
] /

FIG. 5C

US 9,436,435 B2

Sheet 13 of 26

Sep. 6, 2016

U.S. Patent

0£9 0134 300040 vad 629 a13id
¢ro ONIGOONT
Q1314 NOILYH3dO 358~y o

[ATATATALATATATA] (] [w[w[w[ww][a]<] | #o |
959 789 0Z9QTIAAMA 99 K9 509 X3
(g &g Cq g $99 01314 HLAIM
Lasa [xx | [A[aIA]A] [e | 93y | a[x[¥ INWZT3 V1¥Q -
779 01314 X3AN 9315153 ety
T 619 dYW 3000d0

719 01314 300040 TINA 89 9l

529 a1al4

ONIGOINT

XI4Td

¢l 0v9 QT3
059 dvIN 1VINEOAS
43 _ 0y9 _am__h_ooon_oém_m_ 029 A3 M| 30000 509Xy | %
hHN__J _ & ¢ (Y Y
|l 19 gs Tl g _&>_>_>_>_>_>_>_> dld[|l alafalmiwlnlnlwwla]x]uh vo |
| _ _ _ |
299 Q1314 LNFW3OV @_
99 | 99 | zv9 899 d 1314 $99 1314 M
A I R W | 934 |aon 3718

3 S € G A 209 X143¥d X3A 4
31AG 8IS 3LAG N QOW V9Ol

US 9,436,435 B2

Sheet 14 of 26

Sep. 6, 2016

U.S. Patent

= ——

/-

N N

! 0 WL A gz9) Lo, | oyesquas | zeze gor, | L% it | o
A e G e 3 200a 3 NolLy i [wdodiall 04T ssooyt T | AN lamaid 1
OSBRI viva | S B I\ | -NON | ronang 3TN O Save |0
| _ | _ | 08/ TYHOdWILNON
_ _ . _ | 'SS300V AYONIW
- == —— = | e 2 ~ —
| 0.2 [voramad| gzos | vl ahl
244 T3 |a13E| Hiai 33 dsi) 2% SREDIEE | yazes fvear v (R | grais | amadn | W H_
3LVIGINAINSYI NN 13 =y 4T 3k yid wH0dNAL ssYID| 5334 | X3aN |ollviado|J 3]
T Buym Y@ | Jdsia Y Y P 4 SENEIRES BERYE
_ _
lgzss 13l _ 67/ TY40dN3L gel
_) INH | | 'ss300v wowEn SS30OY
| _ _ “ HOWIW
r Vou feramd (s X vorr | w2 et | g |
o aabaa wai) averaraid |LEVEEH fveos vfss3oov| graid | addN |2
3LYIQINNIIS Y [INFNF 13 NOISNYHL YLYQ|=- 5 g~ SSY10 [AJONIW| XIANI JOILYHIO |y
P BLm vivd q A__ON__M3ISI9Z ~ 33vd
_ _
| _ _ _ _ S12 NOILY¥3dO 3dAL
o | 10755300V ANONEIN ON
[0./ |92 @134 86 01314 | 954 Vop. iz 4
el aad|aan| Ham | JINOHveado diEl v89. v|ss300v| QWEH | @iEEN |2 H_
FLYIGINANAS Y ININTI Ve, 01 | ONNOY | SSY10 [AYONIN] X3ANI |OILYYEdO [vniay
C T Bl viva 10HINOD ANNOY|_ ON ju3isiom| 3sva 4|
| | Y.
_ _ VZSL | | _o: ‘0 3dAL THIND ONNO¥gsa oy
002 LYWNO4 NOLLOMALSNI | RECESY _ | 7iN'S5300Y A4ONEN ON ™%
ATONSIY4 HOLOFA DININTD _ HOWIW
] _ _] OZ
[e——— — J y —
_ 02/ [9.0134 gzoy | zes @A | 3% uz 47}
L8L2 ATA QT3] HLOW b agap 230 | 762 a1 vIEE | “paqet | 93| (| g | adan (O |
AUVIGINAHSYIN NN 13 =7 = 1T 121 ssyiof QWA | xaan |oilveiado (3L
_ __BLaw VY@ | 4%dSia | 05/ G134 NOILY¥IAO NOILYLNIWONY CEIRREL IERE I_ VLol
——- 7 w— 711 7) 7
1314 300240 TIN4

US 9,436,435 B2

Sheet 15 of 26

Sep. 6, 2016

U.S. Patent

|—— = - - =T N
0. WoLQ1314 29 | ass! 42 .
| 200 arans | aais| Tadim 4 S dsia) 092 |65 3) B oze aa N geo | Bom | o | o | o, |
I31YIGINNIMSYI INGWTTTE — 50 — (B3] HLONIT § Teys | TOMINOD aoyqn | SSFOIV I v3aN InorLva3do], 9131
- — — — 4.dS1a_t y _
| _ _ _ _ T 0z.
_ _ _ _ _ _ OWM™OOYWIN SSID0V
_ _ _ _ _ _ AJOWIN
_ _ _ _ _ _
_ _ _ _ _ _
_ _ _ | _ _
_ _ _ _ “ [
_ 044 179 131 g6, a3 025/ a3l vore | o 4z ors |
K273) (R foTE] RLeT) N— v~ AN RISy FefTA:] oA e ETE I e p=TE R QS
| LVIGINNI MSYIN | LNFNZ T3 S0103A (32N biswiv 3Liwf SSY10 |AMOWAN| X3NI INOILYH3dO| i 4
S RAL ON Judlsiozs| 3Jsvg [-YARO4
| | _ ! | _ _L12°d0 3dAL
_ _ _ 3ZISA “O'W'M "2V WA ON
I [o [reraa () (vorL | vl al "
IEZ7ACRE TN (oRETE] TN I bl (R777] RIS foTRe] o] en =TI I TR QR |
(FLVIAINI MSYI | ININF13 annoy | ONY Iysvi 3w SSY10 [AYONIN] X3ANT [NOLLYH3HO|, viniio
L _ Pl vhv@] N ON Ju3isioFy| 3svg 104
| 1. °dO 3dAL THIND ONY -
_ _ VLGL | | | __.E<n_ "O'WM “O3¥ "W3N ON 304
00 LYWHO4 NOILONYLSNI a134, _ SS300V
ATANFIH4 HOLD3A OI9aANTD _ | o _ _ _ AHONEA
——— — — " \ON
_ 022 |roraad| aeor 5/ d 89/ - 7. o
| 222 @13 | a3 HLQI |43 dsia] 0% | vszanadvize |SSSWE L qEn | 9w | ofEy | ome | O |
INENTERE adid Svanl YUEE EE)
R 1 '4°4siq | 05/ @714 NOILYY3dO NOLLYINIWONY [u3Lsioay| 3sva |
r S) A

v// 071314 34000 11N4

US 9,436,435 B2

Sheet 16 of 26

Sep. 6, 2016

U.S. Patent

0€8 71414 3d0Dd0 V3 6z8 134
vl ONIQOONS
1314 NOILYH3dO 3SYE 4344

="
[ATATATATATATATA]] [wIn[w[w] [a]a] ~ yzoro
0ze Y Xa
99 $48 Q1314 AMAAA ¥ ‘
Ly "l ﬁ & $9/ @134 HLAIM
| ass | xxx | [nlafala] [w | o34 | [a] [x[s]x] IENERERIN/e v, T3l
TINCIELE vmoz_ NETRRER D INNO
TG 518 d¥I 30090
72/ @714 300940 TIN4 g8 914
008 LYISO4 NOILONYLSNI ATONSIA HO193A O1=193dS
‘ N A Q3IdiLINI SI HIIHM 678 a3l K
¥010v4 ININIOV TSI IHL ATNO SATOH 01l SNIGOONT
1ng 'N«8dSId SY OL a3HY3IIY (L0=A0W NIHM 'aEIE NEENE
N.8dS10) 8292 01314 YOLOv4 LNIWIIVIdSIa vISYIN LM 26L Ov2 Q134
VA 3 518
2 . 058 — =" @131 YH T VI 508 LyWH04
A | | 058 _ movw] A1314 m_DQrOn_O V3o | 08 ATAAAMMA | 300340 X3 qu
— — — &l o = -l — i 1 _ _ -
| SWWI 1,0},0;,dy Qi gIS ___ e QoW JLALATAJALALALALA N [AL [][||] a n[ATA]AJATmME W] w]ww]a] a] x [tk 29vo |
I = ! _ L) |
(01=Q0OW N3IHM z£dSIa) _ | _ G/ _
VeoL ddld l_.zm_>m_0<._n_w_o aREIE ,q._.wm_@mN 4 018 X3y
768 9v8 | v¥8 |zy8 || 048 X3 92 71314 HLAIM
ao | B2 |Ss iy | o3 Jdon) SSY19 INWFT3 Y1VQ .
0 g Gg 2 3 9 £ 208 XI143dd X33
3LAG 8IS 3LAG WA AOW V8 'Ol

U.S. Patent

FIG. 8D

Sep. 6, 2016

Sheet 17 of 26

CLASSFIELD ALPHAFIELD
88 N 752 |

TN

US 9,436,435 B2

BETA FIELD 754

AUGMENTATION OPERATION FIELD 750

1
U

a

BIB[B

RS

MOD FIELD 842

FIELD 7522 [u|B[B]B]
ROUND 752A1 |

\| 1
SAE FIELI?/

L
fz2ir)ro

756

{

o CIm
FIELD 752A :

|
| DATA/l -

s2(s1[s0

| TRANSFORM

ROUND OPERATION FIELD 758 | 752A.2
ROUND CONTROL FIELD 754A |

{

U=0

DATA TRANSFORM
FIELD 7548

MOD FIELD 842
[a[B[B

EVICTION
HINT FIELD
752B

SEE

LT _J 8
DATA MANIPULATION

l _SIB__!
U

Fl

OROR

62A

=1 ~1
FoToros
S

ELD 754C

WRITE
MASK
CONTROL
FIELD 752C

MERGING\[(;)]
ZEROING
1

1 1 i
r I o] 1
W-J o~
ROUND

OPERATION
FIELD 758A

LGS

MOD FIELD 842

757A | ‘

HEEN:N

|
| VECTOR LENGTH FIELD
| 759B

757A

157A.2

L1||'_0

Sl

—

B

§ g g gl
— 4 8)5}/}628
VECTOR LENGTH
FIELD 7598

BROADCAST FIELD 757B

MOD FIELD 842

[00]oR[01]OR[10]

762A
B I'opfDD

US 9,436,435 B2

Sheet 18 of 26

Sep. 6, 2016

U.S. Patent

o

0

S119 9
G16 sioysibay ysely Sl

056 3114 4318193
1V1d INI d3X0vd XWIN

SLig 9
A
()
ya]
|
|
|
a3asvIv |
|
0 "
L)
Y
) S1i9 08
60l (d4.8%)

G¥6 J71d J31SI193H MOVLS d4 "VivOs

Gg6 sia)sibay asodind |elausg

‘ez
sllg 952
A ™\
ﬁmtm 8zl
SLugwx SlwwA
Owiwx OwiwA owwz
L)
Y
sLgzcls
016 si8)sibay Jojoap
S11g#9 X 9l

006 FHNLIFLIHOHY H3LSIOTd

US 9,436,435 B2

Sheet 19 of 26

Sep. 6, 2016

U.S. Patent

_
| V20l

| LINNOD

¢00tb
HO134

901], 201
- LINN LINQ 3HOVYO Yivd | 001 LINN
JHOVD 2201 AHOWIN
Al LINN g11 ¥1vQ
i i
y 0901 (S)¥3LSN1D NOILLND3AXS
y90 290}
{SILINN
o199y (S)ILINN
ANONIN NOILNDIXT
A ry
_ ———
[
8501 (S)LINN STTI4 ¥IALSIDTY TWIISAHd I
- Y _C—_—__—- _ _
- — = - S0 :
I 9501 (S)LINN ¥3INQA3HOS g _ czshhmawm:mm _ 801 "OH
|||||| 3 S Wil
N T w
| OIYOQTIY/ SNuNBN_ _ | NIOKS NN
0£0}
0¥01 LINN 30023a 1IN ONT LNOYA
A
| 8601 HOI134 NOILONYLSNI | ,//
3 0601 3402
9c01 LINN gL NOILONYLSNI €0 LINN
> $E0L LINN IHOVO NOILONY LSNI NOILDI03Yd HONYYE
o 810} 710} N Y o
ozmwb<z LM 2101 avad Adonan zob | olob | 800b | 900s omewuo
NOLL30xg| AJON3N | 39v1S 31N03xX3 /av3y IINAIHOS [ONIWYNTY 00 TTV [33023a H1ONTT
T pOvYE ALRM EIIRE I I A e
v0l '9ld 000} ANMAdId ~——

US 9,436,435 B2

Sheet 20 of 26

Sep. 6, 2016

U.S. Patent

V90l L
JHOVO V1iva L1

acell veell
1H3IANOD 1H3IANOD
OH3INNN OI43INNN
A
1421
Sd41SI193y
= [OARSET)
A
y Vv V¥ Y
0cLi 1747
JTZZIMS 31vOI1d3d
y v VY h 4
8cll
N1V J0L03N 3dIM-SL
A
4
oclL

SHALSIOIYE MSVYIN T LIIM

gl 'Ol

cotbl
MHOMLIN ONIY
A

/

1292
3JHOVO
¢13dHL 40 1388NS TvOO1

A

'

9011
3JHOVO L1

A

4 y

vill [49%
SH31SI193Y SH3ALSIO3A
HO133A HV1VOS

A

2 I

4

OoLLL 8011
LINN 1IN
ls[OAROENLY HYIVOS

A A

0011
300030 NOILONHLSNI

Vil 'Old

US 9,436,435 B2

Sheet 21 of 26

Sep. 6, 2016

U.S. Patent

912l (S)LINN
H¥ITIOYLINOD
sng

p1z1 (S)LINN ﬁ

_

| d3TI0HLNOD
_>m_o_>_m__>_
_

0LZl LINN
IN3OV W3LSAS

r

902} (S)LINN FHOYD QIMVHS

- - A

I NvozL !
LN | ! e e
| 3HoVD | “

e o — —

NCOc) 3400

Y¥0Z1
(S)LINN
JHOVD

Vc0Z) 3400

¢l "old
8021 31901
3504d4Nd
WId3ds
/QONF d0SS3004d

U.S. Patent Sep. 6, 2016 Sheet 22 of 26 US 9,436,435 B2

1315
1300 - — — 17
— 1310

et By
r |:|— PROCESSOR |~ —
| — /1395|
|‘/_—I 1345 | _— 1340
CONTROLLER
co- | | HUB 1320
| PROCESSOR i_ | oo 10 7| MemoRy
I I
1360 —_ — L _
0 ,oHs0 |
|
I |

FIG. 13

US 9,436,435 B2

Sheet 23 of 26

Sep. 6, 2016

U.S. Patent

v.Lva yl 'Old
8zl —— 0ctl
aNY 3009 | s3omaa | 3snow
JOVHOLS V1Ya Lyl WINOD 444 JAHYOIAIN
0zl
- ! J_ :
SLy) vTyl L) 817}
¥0SSIO0Nd o olany S30IA3Q Ol 390148 Sng
oLyl r
961 | zeph —1 A | eenl
g6, — dd 0671 13SdIHD A d L gep, _wo@mmoo%oo
6y, — —
el 5l
|
98y} — 88y} A \ \ L aLpl
8.yl
e
— 8% =7
NI NI
yep) ZErl
AMOWIW AMOWAN
HOSSIIONA0D
/40SSI00Hd ¥0SS300Nd

AN

US 9,436,435 B2

Sheet 24 of 26

Sep. 6, 2016

U.S. Patent

1444
AHONIN

cevl
AJOW3N

Sl 'Old
G161
O/l ADYOT1
0671 9671 4/
13SdIHD
8671 d-d 6l d-d
vmil\» « %SI\» «
"
9871 — ggp —\ \ . gy
8.7
Syl
— 287! vl =7
— 1 10
H¥0SSID0Hd ¥0SSID0Hd
—— —
. 16l
— S30IA3A O/

/// 0051

US 9,436,435 B2

Sheet 25 of 26

Sep. 6, 2016

U.S. Patent

121 (S)LINN
0¥91 0£91 Y3TIOHINOD
LINN AY1dSIC ¢Eal 1IN VD LINN VS AHOWAN
Q3LVHOILNI
912} (S)LINN
YITIOHLNOD
Sng — 2097 (STIINN H_omzzoomEz_]

012} LINN
IN3OV W3LSAS

_
| 902} (S)LINN FHOYD AIHVHS

- — "

|

L Npozs
|1 (S)LNn |
|1 3HOVO |
_
L

Nc0¢l 3409 |

0191 40SS300dd NOILYOIlddV

0291 (S)40SS3D0Yd0D

Yy0Zl
(S)LINN
JHOVD

vc0cl 3409

/ 009}

dIHO V NO W3L1SAS

91 "Old

US 9,436,435 B2

Sheet 26 of 26

Sep. 6, 2016

U.S. Patent

Ll 'Ol

¢0/1 3OVNONVTT13ATTHOIH

804} ¥ITIANOD
135S NOILONYLSNI
JAILYNYGSLTY

v0L} ¥3TdNOD 98X

904} 3A0D AYVYNIG 98X

Z1L) Y3LYIANOD
NOILONYLSNI \
01} 300D AYYNIE
135 NOILONYLSNI
TMYML40S IAILYNYALTY
MYMaNYH 0\ | T
A
o ¥1.2) 340D 13S NOILONYLSNI
3400 13S NOILONYLSNI
98X INO LSYIT 98X NV LNOHLIM HOSSIO0Nd
LY HLIM ¥0SS3004d

US 9,436,435 B2

1
APPARATUS AND METHOD FOR VECTOR
INSTRUCTIONS FOR LARGE INTEGER
ARITHMETIC

CROSS-REFERENCE TO RELATED
APPLICATION

This patent application is a U.S. National Phase Applica-
tion under 35 U.S.C. §371 of International Application No.
PCT/US2011/067165, filed Dec. 23, 2011, entitled APPA-
RATUS AND METHOD FOR VECTOR INSTRUCTIONS
FOR LARGE INTEGER ARITHMETIC.

BACKGROUND

1. Field of Invention

The present invention pertains to the computing sciences
generally, and, more specifically to an apparatus and method
for vector instructions for large integer arithmetic.

2. Background

FIG. 1 shows a high level diagram of a processing core
100 implemented with logic circuitry on a semiconductor
chip. The processing core includes a pipeline 101. The
pipeline consists of multiple stages each designed to perform
a specific step in the multi-step process needed to fully
execute a program code instruction. These typically include
at least: 1) instruction fetch and decode; 2) data fetch; 3)
execution; 4) write-back. The execution stage performs a
specific operation identified by an instruction that was
fetched and decoded in prior stage(s) (e.g., in step 1) above)
upon data identified by the same instruction and fetched in
another prior stage (e.g., step 2) above). The data that is
operated upon is typically fetched from (general purpose)
register storage space 102. New data that is created at the
completion of the operation is also typically “written back”
to register storage space (e.g., at stage 4) above).

The logic circuitry associated with the execution stage is
typically composed of multiple “execution units” or “func-
tional units” 103_1 to 103_N that are each designed to
perform its own unique subset of operations (e.g., a first
functional unit performs integer math operations, a second
functional unit performs floating point instructions, a third
functional unit performs load/store operations from/to
cache/memory, etc.). The collection of all operations per-
formed by all the functional units corresponds to the
“instruction set” supported by the processing core 100.

Two types of processor architectures are widely recog-
nized in the field of computer science: “scalar” and “vector”.
A scalar processor is designed to execute instructions that
perform operations on a single set of data, whereas, a vector
processor is designed to execute instructions that perform
operations on multiple sets of data. FIGS. 2A and 2B present
a comparative example that demonstrates the basic differ-
ence between a scalar processor and a vector processor.

FIG. 2A shows an example of a scalar AND instruction in
which a single operand set, A and B, are ANDed together to
produce a singular (or “scalar”) result C (i.e., AB=C). By
contrast, FIG. 2B shows an example of a vector AND
instruction in which two operand sets, A/B and D/E, are
respectively ANDed together in parallel to simultaneously
produce a vector result C, F (i.e., AL AND.B=C and
D.AND.E=F). As a matter of terminology, a “vector” is a
data element having multiple “elements”. For example, a
vector V=Q, R, S, T, U has five different elements: Q, R, S,
T and U. The “size” of the exemplary vector V is five
(because it has five elements).

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 also shows the presence of vector register space
104 that is different that general purpose register space 102.
Specifically, general purpose register space 102 is nominally
used to store scalar values. As such, when, the any of
execution units perform scalar operations they nominally
use operands called from (and write results back to) general
purpose register storage space 102. By contrast, when any of
the execution units perform vector operations they nomi-
nally use operands called from (and write results back to)
vector register space 107. Different regions of memory may
likewise be allocated for the storage of scalar values and
vector values.

Note also the presence of masking logic 104_1 to 104_N
and 105_1 to 105_N at the respective inputs to and outputs
from the functional units 103_1 to 103_N. In various imple-
mentations, only one of these layers is actually imple-
mented—although that is not a strict requirement. For any
instruction that employs masking, input masking logic
104_1 to 104_N and/or output masking logic 105_1 to
105_N may be used to control which elements are effec-
tively operated on for the vector instruction. Here, a mask
vector is read from a mask register space 106 (e.g., along
with input data vectors read from vector register storage
space 107) and is presented to at least one of the masking
logic 104, 105 layers.

Over the course of executing vector program code each
vector instruction need not require a full data word. For
example, the input vectors for some instructions may only be
8 elements, the input vectors for other instructions may be
16 elements, the input vectors for other instructions may be
32 elements, etc. Masking layers 104/105 are therefore used
to identify a set of elements of a full vector data word that
apply for a particular instruction so as to effect different
vector sizes across instructions. Typically, for each vector
instruction, a specific mask pattern kept in mask register
space 106 is called out by the instruction, fetched from mask
register space and provided to either or both of the mask
layers 104/105 to “enable” the correct set of elements for the
particular vector operation.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example
and not limitation in the figures of the accompanying
drawings, in which like references indicate similar elements
and in which:

FIG. 1 shows an instruction execution pipeline;

FIGS. 2a and 2b compare scalar vs. vector processing;

FIG. 3a through FIG. 3¢ show a mathematical perspective
for the multiplication of two large numbers;

FIGS. 4a through 44 pertain to a first embodiment of an
instruction set and sequence code thereof for the multipli-
cation of two large numbers;

FIGS. 5a through 5¢ pertain to a first embodiment of an
instruction set and sequence code thereof for the multipli-
cation of two large numbers;

FIG. 6A illustrates an exemplary AVX instruction format;

FIG. 6B illustrates which fields from FIG. 6 A make up a
full opcode field and a base operation field;

FIG. 6C illustrates which fields from FIG. 6 A make up a
register index field;

FIGS. 7A-7B are block diagrams illustrating a generic
vector friendly instruction format and instruction templates
thereof according to embodiments of the invention;

FIG. 8 is a block diagram illustrating an exemplary
specific vector friendly instruction format according to
embodiments of the invention;

US 9,436,435 B2

3

FIG. 9 is a block diagram of a register architecture
according to one embodiment of the invention;

FIG. 10A is a block diagram illustrating both an exem-
plary in-order pipeline and an exemplary register renaming,
out-of-order issue/execution pipeline according to embodi-
ments of the invention;

FIG. 10B is a block diagram illustrating both an exem-
plary embodiment of an in-order architecture core and an
exemplary register renaming, out-of-order issue/execution
architecture core to be included in a processor according to
embodiments of the invention;

FIGS. 11A-B illustrate a block diagram of a more specific
exemplary in-order core architecture, which core would be
one of several logic blocks (including other cores of the
same type and/or different types) in a chip;

FIG. 12 is a block diagram of a processor that may have
more than one core, may have an integrated memory con-
troller, and may have integrated graphics according to
embodiments of the invention;

FIG. 13 is a block diagram of a exemplary system in
accordance with an embodiment of the present invention;

FIG. 14 is a block diagram of a first more specific
exemplary system in accordance with an embodiment of the
present invention;

FIG. 15 is a block diagram of a second more specific
exemplary system in accordance with an embodiment of the
present invention;

FIG. 16 is a block diagram of a SoC in accordance with
an embodiment of the present invention;

FIG. 17 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention.

DETAILED DESCRIPTION
Overview
Detailed Description

FIG. 3a through FIG. 3¢ show a mathematical perspective
for the multiplication of two large numbers that forms the
basis for vector integer instructions described in more detail
further below. For simplicity, the integers being multiplied
in FIG. 3a are not very large and, moreover, are expressed
in base 10 form (ten possible digits O through 9) rather than
in base 2 form (two possible digits 0 and 1). Nevertheless,
they are sufficient to bring forward pertinent aspects of the
instructions described herein which are capable of multiply-
ing much larger numbers expressed in base 2 form.

As observed in FIG. 3a, a multiplicand B=765 is multi-
plied 301 by a multiplier A=834. The summation of partial
products 302 is consistent with elementary mathematics and
shows the final result to be 638,010. Notably, the three
partial products 302a, 3025, 30256 can be viewed akin to a
“right-wise staircase” structure 303, where: 1) the lowest
ordered partial product 302a corresponds to the multiplica-
tion of the lowest ordered digit of the multiplier A[0]=4 by
all three digits of the multiplicand B[2:0]=765; 2) the middle
ordered partial product 3025 is shifted to the left one place
relative to the lowest ordered partial product 302¢ and
corresponds to the multiplication of the middle ordered digit
of the multiplier A[1]=3 by all three digits of the multipli-
cand B[2:0]=765; and, 3) the highest ordered partial product
302c¢ is shifted to the left one place relative to the middle
ordered partial product 3025 and corresponds to the multi-

10

15

20

25

30

35

40

45

50

55

60

65

4

plication of the highest ordered digit of the multiplier
A[2]=8 by all three digits of the multiplicand B[2:0]=765.

As such, the three partial products can be expressed as: 1)
AJ0]*B[2:0] for the lowest ordered partial product 3024, 2)
A[1]1*B[2:0] for the middle ordered partial product 3025;
and, 3) A[2]*B[2:0] for the highest ordered partial product
302c¢.

FIG. 35 shows a perspective for the determination of the
partial products. Specifically, the calculation of each of the
partial products 302a,5,c can also be viewed as a respective
right-wise staircase structure much the same as discussed
just above. For example, the lowest ordered partial product
302a can be determined by summing over three sub-partial
products 304a,b,c. Here, the first sub-partial product 304a
corresponds to A[O]*B[0] (i.e., 4%5=20), the second sub-
partial product 3045 corresponds to A[0]*BJ[1] (i.e., 4%6=24)
shifted left one digit location relative the first sub-partial
product 304a, and, the third sub-partial product 304¢ cor-
responds to A[0]*B[2] (i.e., 4%7=28) shifted left one digit
location relative to the second sub-partial product 3044.

The partial product 302a is determined by adding the
sub-partial products consistent with their alignment as indi-
cated by arrows 305a-d. Note that carry terms are respected
as indicated by carry term 306. The remaining partial
products 3025 and 302¢ are determined in like manner as
observed in insets 307 and 308.

FIG. 3¢ shows a flow diagram that illustrates a method of
multiplication consistent with some of the principles dis-
cussed above. Partial product digits are accumulated in a
storage element S 320. For the recursion 330 of the first
partial product term, the storage element S is initialized with
a value of 0 for all digits 320_1. A first partial product is
determined by selecting a lowest ordered digit in a multiplier
(A[0]) and multiplying 310 it with the lowest ordered digit
in a multiplicand (B[0]). The lowest ordered digit in the
multiplier A[0] is then multiplied 311 against the next higher
ordered multiplicand (B[1]). The least significant digit of the
two sub partial products is added with its corresponding
(aligned) digit in storage element S 320_1 and re-stored in
storage element S 320_2. The pair of digits of the two
sub-partial products having overlapping alignment are
added 313 with their corresponding (aligned) digit of storage
element S 320_1. The results of addition 313 are kept in
storage element 320_2.

The lowest ordered digit in the multiplier A[0] is next
multiplied 314 against the next higher digit in the multipli-
cand 314 (B[2)) and the result is added 315 with the highest
ordered bit of sub partial product 311 and their correspond-
ing (aligned) digit in storage element S. The result of
addition 315 is re-stored in storage element S 320_2. Note
that a carry term is generated 316 with addition 315.

Because the B[2] term is the highest ordered digit in the
multiplicand, the highest ordered digit of sub-partial product
314 is added 317 to its corresponding (aligned) digit in
storage element S and the carry term. At this point, the first
partial product is stored in storage element S 320_2. Those
of ordinary skill will appreciate that various “kernels” of
multiplication, alignment, addition and storage processes
can be devised that are repeated for multiple additional digit
locations depending on the size of the multiplicand.

With the first partial product being stored in storage
element 320_2, a substantially similar process as that of
process 330 is used to calculate the second partial product
A[1]*B[2:0] with the resulting accumulation of partial prod-
ucts being left in storage element S 320_3. As with the
calculation of the first partial product, for each digit in the
multiplicand B, there is a multiplication with the multiplier

US 9,436,435 B2

5

term (A[1] in this case), the resultant is properly aligned and
aligned digits of two consecutive products are added. An
additional feature of the calculation of the second partial
product is that its “rightwise staircase” structure is aligned
one digit to the left relative to the “rightwise staircase”
structure of the previous (first) partial product.

The third partial product is calculated with the same
approach and the final result of the multiplication is stored
in storage element 320_4. Those of ordinary skill will
recognize that, although only three iterations are shown
(because the multiplicand only has three digits), the recur-
sion described above can be extended to include more or less
iterations depending on the size of the multiplicand.

FIGS. 4a,b and 5a,b pertain to an instruction set and
variations thereof for implementation in a semiconductor
processing unit (e.g. a processing core of a multi-core CPU).
Here, two large integer values A and B are to be multiplied.
In an embodiment, A and B can each be as large as 512 bits.
In a further embodiment, each “digit” of A and B is viewed
as a 64 bit value within the overall 512 bit structure. As such,
each of A and B can be viewed as being as large as an 8
element vector where each element in the vector represents
a digit, and, each digit is 64 bits.

According to this perspective, the partial product recur-
sions take the form of A[i]*B[7:0] where A[i] represents a
particular digit in the multiplicand A and B[7:0] represents
each digit in the multiplier B. As described in further detail
below, similar to the approach just discussed above, the
multiplication of A*B is performed by determining the
partial product A[i]*B[7:0] for each value of i where i
represents a different digit in the multiplicand A. Also
similar to the approach just discussed above, aligned digits
of'a same partial product recursion are added together along
with a value along the same alignment position that was
stored from the previously calculated partial product recur-
sion. These and other features will be more apparent through
discussion of the immediately following example.

FIG. 4a shows an instruction sequence 401 that calculates
a partial product for the A[0] multiplier term. Here, the
instruction sequence can be viewed as calculating the prod-
uct of A[0]*BJ[j] for each of j recursions where j=0 to 7 (for
a maximum sized multiplicand B). Because both the A[0]
and the BJ[j] term corresponds to a 64 bit digit, 128 bits are
allocated for the product of the two. FIG. 4a shows the
right-wise stair case structure effected by the instruction
sequence. Each sub-partial product is represented by a 128
bit data structure consisting of a 64 bit lower half (“L.o””) and
a 64 bit upper half (“Hi”).

The instruction sequence 401 relies on a class of multi-
plication instructions that return the low half or upper half of
a sub partial product A[i] *B [j] term. A first instruction 411
VPMUL_LO calculates the first sub partial product term
(A[0] *B [0]) and returns its lower half (Lo_0) in resultant
register R_Lo. Partial product terms, as opposed to sub-
partial product terms, are accumulated in register S. Here, S
is a vector where each element in vector S corresponds to a
64 bit digit in the accumulated partial product value con-
tained in vector S. Instruction sequence 401 corresponds to
the initial recursion (i.e., the recursion for the A[O] term),
thus vector S is initialized beforehand with a value O for all
digits.

The second instruction 412 performs aligned addition by
adding the contents of R_[.o with the lowest ordered ele-
ment/digit in S (S[0]=0) and re-storing it in S. Instructions
411 and 412 serve as an initial, special sequence to calculate
the lowest ordered value in the recursion. A “kernel” of

20

30

40

45

50

55

6

operation 420 that can be looped over multiple values of j for
the first partial product calculation is presented immediately
below.

The third instruction 413 VPMUL_HI calculates the first
sub partial product term (A[0]*B[0]; j=0) and returns its
higher half (Hi_0O) in resultant register R_Hi. A fourth
instruction VPMUL_LO 414 calculates the second sub
partial product term (A[0]*B[1]; j=1) and returns its lower
half (Lo_1) in resultant register R_Lo. A fifth instruction 415
performs aligned addition by adding the contents of R_Io,
R_Hi and their corresponding (aligned) element/digit in S
(S[1]=0) and re-storing it in S.

Sequence 413, 414 and 415 corresponds to a “kernel” 420
that can be looped for j=1 through 7. For example, continu-
ing with the next j=2 incursion, a sixth instruction 416
VPMUL_HI calculates the second sub partial product term
(AJO]*B[1]; j=1) and returns its higher half (Hi_l) in
resultant register R_Hi. A seventh instruction VP_MUL 417
calculates the third sub partial product term (A[0]*B[2]; j=2)
and returns its lower half (Lo_2) in resultant register R_L.o.
An eighth instruction 418 performs aligned addition by
adding the contents of R_L.o, R_Hi and their corresponding
(aligned) element/digit in S (S[1]=0) and re-storing it in S.

The kernel can continue to loop through j=7. After the j=7
loop is performed, the digits in S have been calculated
through element S[7]. A final sequence to complete the
recursion for the first partial product is to execute a last
VPMUL_HI instruction 421 which calculates the eighth sub
partial product term (A[O]*B[7]; j=7) and returns its higher
half (Hi_7) to R_Hi, and, execute a last instruction 422 that
performs an aligned add 423 of the contents of R_Hi with
the highest ordered digit in S (S[8]) and re-storing the result
in S. At this point, S contains the first partial product.

Each subsequent partial product can then be calculated as
substantially as described above. Two noteworthy features
are the initial value of S will no longer be zero but rather
contain an accumulation of the previously calculated partial
products. Also, the alignment of each partial product needs
to move one digit to the left as compared to the previously
calculated partial product (similar to the alignment relation-
ship of staircase structures in FIG. 35).

Note that S is a nine element vector. That is, S has nine
64 bit values to represent the accumulated partial product
terms. In an embodiment where the maximum vector size is
512 bits and digits of S are represented by 64 bit values, the
size of S exceeds 512 bits by 128 bits. As such, two vectors
S1 and S2 may be used by the instruction sequence where S1
keeps elements S[7:0] and S2 keeps S[8]. In this case, S1 is
read from//written to for all instructions described above
except instructions 425 and 427 which write to S2.

FIG. 5a shows another approach having a different opera-
tional pattern in the kernel. As will be described in more
detail below, the repeatable kernel of the approach of FIG.
5a includes two ADD instructions to help accumulate terms
for neighboring elements in S.

For the initial j=0 recursion, a VPMUL_Lo instruction is
executed 511 to determine the lower half of A[O0]*B[0]
(Lo_0) and the resultant is stored in R_Lo, and, a
VPMUL_Hi instruction is executed 512 to determine the
upper half of A[0]*B[0] (Hi_0) and the resultant is stored in
R_Hi. An ADD instruction 513 then adds the S[0] term
(which is initially zero as is all digits of S for the initial j=0
recursion) to the R_Lo value and stored back in S[O].
Another ADD instruction 514 adds the S[1] term to the R_Hi
value and the result is stored back in S[1].

For the next, j=1 recursion, again VPMUL_Lo and
VPMUL_Hi instructions are executed 515, 516 with respec-

US 9,436,435 B2

7

tive results being stored in R_Lo and R_Hi respectively. A
first subsequent ADD instruction adds 517 the contents of
S[j1=S[1] to the contents of R_[.o and stores the result back
in S[j]=S[1]. A second subsequent ADD instruction adds 518
the contents of S[j+1]=S[2] to the contents of R_Hi and
stores the result back in S[j+1]=S[2].

Steps 511 through 514 (or 515 through 518) correspond to
a kernel that is repeated for each of the following recursions
for j=2 through j=7. At the end of the j=7 cycle, each of
digits S[2] through S[8] have been written to, which, cor-
responds to the partial product of A[0]*B[7:0]. The same
sequence as described above for the A[0] multiplier is then
repeated for each of A[1] through A[7]. Here, the accumu-
lated partial product(s) of the previously determined partial
product are updated/accumulated in S. The alignment of
each subsequent iteration for a multiplier term should be
aligned one digit to the left as compared to the alignment of
the recursion performed for the preceding multiplier term.

Other recursion patterns than those presented in FIGS. 4a
and 5a may be possible. FIGS. 4a and 5a also may utilize a
unique approach with respect to the handling of the carry
terms of the various ADD operations. Specifically, mask
vector register space may be used to handle any mathemati-
cal carries that may be ancillary to the resultant of an ADD
instruction.

FIG. 4b shows a more detailed implementation of an
embodiment of the kernel 420 of FIG. 4a. With respect to the
approach of FIG. 45, the ADD instructions observed therein
include an additional input k which corresponds to a mask
register that is used to keep carry terms. Here, any carry term
to be incorporated into the addition of the ADD instruction
is received through mask register k and any carry term
generated from the addition is “written back™ to the mask
register k. That is, mask register k is specified as containing
both a source operand 430 and resultant 431. As envisioned,
the source operand k 430 holds the carry term from the ADD
instruction of the immediately preceding recursion. The
carry term is added into the addition performed by ADD
instruction 432. Any carry term that is generated from the
addition performed by ADD instruction 432 is stored back
into k as the resultant carry term 431 for use by the ADD
instruction of the immediately following recursion.

A mathematical artifact of adding three operands is that
the carry term may be larger than one bit. For example, if
three 64 bit operands are added, the result may be 66 bits
wide. As such, in this case, the carry term may be two bits
rather than one bit. In an embodiment, rather than numeri-
cally add these carry terms in the ADD instruction of the
next recursion, the carry terms are simply “written” as the
least significant bits of the summation resultant. That is, the
logic circuitry that implements ADD instruction 432 is
designed to write the contents of the k source operand 430
as the lowest ordered bits of the ADD resultant (not the carry
resultant 431) that is stored in S.

The approach of FIG. 5a does not utilize a “three input
operand” ADD instruction. Instead, a two input operand
ADD instruction is used. Nevertheless, three terms are being
added in each recursion. As such, the mathematical artifact
referred to just above still applies. That is, at least for 64 bit
digits, the addition performed to completely calculate each
S[j] term may mathematically generate a two bit carry term.
In order to address this feature, two different carry terms kO,
k1 are separately tracked in mask register space as observed
in the more detailed recursion flow of FIG. 5b.

Essentially, as any addition may generate a carry term for
the “next addition to the left”, as long as carry terms are
forwarded in this manner the mathematical results will be

10

20

25

30

35

40

45

50

55

60

65

8

accurate. Careful observation of the instruction flow reveals
that both of the resultant kO, k1 carry terms are used as
source operands for their respective “next addition to the
left”.

Note that in the case where the instruction sequences of
FIGS. 4a, 4b, 5a, 5b are performed on a vector processor
having 512 bit input operands which can be granularized to
eight elements of 64 bits per element, the instruction
sequences of FIGS. 4a, 4b, 5a and 5b are capable of
supporting a procedure that simultaneously multiplies eight
large multiplicands by eight respective large multipliers.
That is, for example, a first input vector may be created
having 8 64 bit elements where each element corresponds to
a specific digit in eight different multiplicands, and, a second
input input vector may be created having 8 64 bit elements
where each element corresponds to a specific digit in eight
different multipliers. With these and similarly structured
vectors, the operations observed in FIGS. 4a, 45, 5a and 55
can simultaneously multiply eight multiplicand and multi-
plier pairs.

FIG. 4¢ shows a logic design for an execution unit that can
perform the VPMUL_LLO and VPMUL_HI instructions as
described above. The logic design of FIG. 4¢ can be used to
support the multiplication instructions of FIG. 4a, 4b, 5a or
5b. As observed in FIG. 4c, a multiplier 450 receives a first
input operand from a first input operand register 451 and
receives a second input operand from a second input oper-
and register 452. Input operand registers 451, 452 may be
part of vector register space, an output of a data fetch stage
of an instruction execution pipeline, or, an input of the
execution unit. Multiplexer logic circuitry 453 selects either
the low half or the right half of the full multiplication output.
Whether the low half or right half is selected is determined
from the instruction fetch and decode stage of the instruction
execution pipeline (specifically, the decoding of the instruc-
tion opcode that specifies whether the instruction is
VPMUL_LO or VPMUL_HI).

The selected half is presented to write mask circuitry 454.
A mask vector stored in mask vector register 455 is applied
as an input to write mask circuitry 454. Mask write circuitry
454 applies the mask to the selected half and the result is
written to resultant register 456. Resultant register 456 may
be in vector register space or at the output of the execution
unit. Additional features may be included to the base design
of FIG. 4¢ such as support for different “digit” bit widths. In
one embodiment, the granularity of the multiplier, the selec-
tion logic and the write mask circuitry is such that the digit
width can be any size of 2” provided it is equal to or less than
maximum vector input operand size (e.g., 512 bits). For
example, if n=4, the digit width is 16 bits which corresponds
to a capability of simultaneously multiplying 32 different
multiplicands and respective multipliers for a 512 bit input
operand size.

FIG. 4d shows a logic design for a three input operand
ADD instruction that uses mask register space to handle
carry terms. The logic design of FIG. 44 can be used by an
execution unit that supports the ADD instructions of FIGS.
4a and 4b. As observed in FIG. 44, three input operands are
respectively provided to an adder circuit 464 by way of input
operand registers 461, 462 and 463. Input operand registers
461, 462, 463 may be from vector register space, an output
of a data fetch stage of an instruction execution pipeline or
an input of the execution unit. A mask input register 465
receives, potentially, mask vectors for other instructions
supported by the execution unit. Consequently, outputs of
the mask input register 465 flow to write mask circuitry 466.
The mask input register 465 may be part of vector register

US 9,436,435 B2

9

space, an output of a data fetch stage or an input of the
execution unit. To support the three input ADD instruction,
however, the mask register 465 also supplies carry terms that
are provided to the carry input of the adder 464. Alterna-
tively, as described above, signal lines carrying the carry
input from register 465 may be directly routed to the lowest
ordered bits of the resultant. A carry output from the adder
464 is provided to an output mask register 467 whose
contents may write over whatever register sourced the carry
terms in register 465.

FIG. 5¢ shows a logic design for a two input operand
ADD instruction that uses mask register space to handle
carry terms. The logic design of FIG. 5¢ can be used by an
execution unit that supports the ADD instructions of FIGS.
5a and 5b. As observed in FIG. 5¢, two input operands are
respectively provided to an adder circuit 564 by way of input
operand registers 562 and 563. Input operand registers 562,
563 may be from vector register space, an output of a data
fetch stage of an instruction execution pipeline or an input
of the execution unit. A mask input register 565 receives,
potentially, mask vectors for other instructions supported by
the execution unit. Consequently, outputs of the mask input
register 565 flow to write mask circuitry 566. The mask
input register 565 may be part of vector register space, an
output of a data fetch stage or an input of the execution unit.
To support the two input ADD instruction, however, the
mask register 565 also supplies carry terms that are provided
to the carry input of the adder 564. A carry output from the
adder 564 is provided to an output mask register 567 whose
contents may write over whatever register sourced the carry
terms in register 565.

Exemplary Instruction Formats

Embodiments of the instruction(s) described herein may
be embodied in different formats. For example, the instruc-
tion(s) described herein may be embodied as a VEX, generic
vector friendly, or other format. Details of VEX and a
generic vector friendly format are discussed below. Addi-
tionally, exemplary systems, architectures, and pipelines are
detailed below. Embodiments of the instruction(s) may be
executed on such systems, architectures, and pipelines, but
are not limited to those detailed.

VEX Instruction Format

VEX encoding allows instructions to have more than two
operands, and allows SIMD vector registers to be longer
than 128 bits. The use of a VEX prefix provides for
three-operand (or more) syntax. For example, previous
two-operand instructions performed operations such as
A=A+B, which overwrites a source operand. The use of a
VEX prefix enables operands to perform nondestructive
operations such as A=B+C.

FIG. 6A illustrates an exemplary AVX instruction format
including a VEX prefix 602, real opcode field 630, Mod
RIM byte 640, SIB byte 650, displacement field 662, and
IMMS 672. FIG. 6B illustrates which fields from FIG. 6A
make up a full opcode field 674 and a base operation field
642. FI1G. 6C illustrates which fields from FIG. 6 A make up
a register index field 644.

VEX Prefix (Bytes 0-2) 602 is encoded in a three-byte
form. The first byte is the Format Field 640 (VEX Byte 0,
bits [7:0]), which contains an explicit C4 byte value (the
unique value used for distinguishing the C4 instruction
format). The second-third bytes (VEX Bytes 1-2) include a
number of bit fields providing specific capability. Specifi-
cally, REX field 605 (VEX Byte 1, bits [7-5]) consists of a
VEXR bit field (VEX Byte 1, bit [7]-R), VEX.X bit field
(VEX byte 1, bit [6]-X), and VEX.B bit field (VEX byte 1,
bit[5]-B). Other fields of the instructions encode the lower

10

15

20

25

30

35

40

45

50

55

60

65

10

three bits of the register indexes as is known in the art (rrr,
xxX, and bbb), so that Rrrr, Xxxx, and Bbbb may be formed
by adding VEX.R, VEX.X, and VEX.B. Opcode map field
615 (VEX byte 1, bits [4:0]-mmmmm) includes content to
encode an implied leading opcode byte. W Field 664 (VEX
byte 2, bit [7]-W)—is represented by the notation VEX. W,
and provides different functions depending on the instruc-
tion. The role of VEX.vvvv 620 (VEX Byte 2, bits [6:3]-
vvvv) may include the following: 1) VEX.vvvv encodes the
first source register operand, specified in inverted (1s
complement) form and is valid for instructions with 2 or
more source operands; 2) VEX.vvvv encodes the destination
register operand, specified in is complement form for certain
vector shifts; or 3) VEX.vvvv does not encode any operand,
the field is reserved and should contain 1111b. If VEX.L 668
Size field (VEX byte 2, bit [2]-L)=0, it indicates 128 bit
vector; if VEX.L=1, it indicates 256 bit vector. Prefix
encoding field 625 (VEX byte 2, bits [1:0]-pp) provides
additional bits for the base operation field.

Real Opcode Field 630 (Byte 3) is also known as the
opcode byte. Part of the opcode is specified in this field.

MOD R/M Field 640 (Byte 4) includes MOD field 642
(bits [7-6]), Reg field 644 (bits [5-3]), and R/M field 646
(bits [2-0]). The role of Reg field 644 may include the
following: encoding either the destination register operand
or a source register operand (the rrr of Rrrr), or be treated as
an opcode extension and not used to encode any instruction
operand. The role of R/M field 646 may include the follow-
ing: encoding the instruction operand that references a
memory address, or encoding either the destination register
operand or a source register operand.

Scale, Index, Base (SIB)—The content of Scale field 650
(Byte 5) includes SS652 (bits [7-6]), which is used for
memory address generation. The contents of SIB.xxx 654
(bits [5-3]) and SIB.bbb 656 (bits [2-0]) have been previ-
ously referred to with regard to the register indexes Xxxx
and Bbbb.

The Displacement Field 662 and the immediate field
(IMMS) 672 contain address data.

Generic Vector Friendly Instruction Format

A vector friendly instruction format is an instruction
format that is suited for vector instructions (e.g., there are
certain fields specific to vector operations). While embodi-
ments are described in which both vector and scalar opera-
tions are supported through the vector friendly instruction
format, alternative embodiments use only vector operations
the vector friendly instruction format.

FIGS. 7A-7B are block diagrams illustrating a generic
vector friendly instruction format and instruction templates
thereof according to embodiments of the invention. FIG. 7A
is a block diagram illustrating a generic vector friendly
instruction format and class A instruction templates thereof
according to embodiments of the invention; while FIG. 7B
is a block diagram illustrating the generic vector friendly
instruction format and class B instruction templates thereof
according to embodiments of the invention. Specifically, a
generic vector friendly instruction format 700 for which are
defined class A and class B instruction templates, both of
which include no memory access 705 instruction templates
and memory access 720 instruction templates. The term
generic in the context of the vector friendly instruction
format refers to the instruction format not being tied to any
specific instruction set.

While embodiments of the invention will be described in
which the vector friendly instruction format supports the
following: a 64 byte vector operand length (or size) with 32
bit (4 byte) or 64 bit (8 byte) data element widths (or sizes)

US 9,436,435 B2

11

(and thus, a 64 byte vector consists of either 16 doubleword-
size elements or alternatively, 8 quadword-size elements); a
64 byte vector operand length (or size) with 16 bit (2 byte)
or 8 bit (1 byte) data element widths (or sizes); a 32 byte
vector operand length (or size) with 32 bit (4 byte), 64 bit (8
byte), 16 bit (2 byte), or 8 bit (1 byte) data element widths
(or sizes); and a 16 byte vector operand length (or size) with
32 bit (4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (1
byte) data element widths (or sizes); alternative embodi-
ments may support more, less and/or different vector oper-
and sizes (e.g., 256 byte vector operands) with more, less, or
different data element widths (e.g., 128 bit (16 byte) data
element widths).

The class A instruction templates in FIG. 7A include: 1)
within the no memory access 705 instruction templates there
is shown a no memory access, full round control type
operation 710 instruction template and a no memory access,
data transform type operation 715 instruction template; and
2) within the memory access 720 instruction templates there
is shown a memory access, temporal 725 instruction tem-
plate and a memory access, non-temporal 730 instruction
template. The class B instruction templates in FIG. 7B
include: 1) within the no memory access 705 instruction
templates there is shown a no memory access, write mask
control, partial round control type operation 712 instruction
template and a no memory access, write mask control, vsize
type operation 717 instruction template; and 2) within the
memory access 720 instruction templates there is shown a
memory access, write mask control 727 instruction template.

The generic vector friendly instruction format 700
includes the following fields listed below in the order
illustrated in FIGS. 7A-7B. In conjunction with the discus-
sions above of FIGS. 4a,b,¢,d and 5,a,b,¢ in an embodiment,
referring to the format details provided below in FIGS. 7A-B
and 8, either a non memory access instruction type 705 or a
memory access instruction type 720 may be utilized.
Addresses for the read mask(s), input vector operand(s) and
destination may be identified in register address field 744
described below. In a further embodiment, the write mask is
specified in write mask field 770.

Format field 740—a specific value (an instruction format
identifier value) in this field uniquely identifies the vector
friendly instruction format, and thus occurrences of instruc-
tions in the vector friendly instruction format in instruction
streams. As such, this field is optional in the sense that it is
not needed for an instruction set that has only the generic
vector friendly instruction format.

Base operation field 742—its content distinguishes dif-
ferent base operations.

Register index field 744—its content, directly or through
address generation, specifies the locations of the source and
destination operands, be they in registers or in memory.
These include a sufficient number of bits to select N registers
from a PxQ (e.g. 32x512, 16x128, 32x1024, 64x1024)
register file. While in one embodiment N may be up to three
sources and one destination register, alternative embodi-
ments may support more or less sources and destination
registers (e.g., may support up to two sources where one of
these sources also acts as the destination, may support up to
three sources where one of these sources also acts as the
destination, may support up to two sources and one desti-
nation).

Modifier field 746—its content distinguishes occurrences
of instructions in the generic vector instruction format that
specify memory access from those that do not; that is,
between no memory access 705 instruction templates and
memory access 720 instruction templates. Memory access

10

15

20

25

30

35

40

45

50

55

60

65

12

operations read and/or write to the memory hierarchy (in
some cases specifying the source and/or destination
addresses using values in registers), while non-memory
access operations do not (e.g., the source and destinations
are registers). While in one embodiment this field also
selects between three different ways to perform memory
address calculations, alternative embodiments may support
more, less, or different ways to perform memory address
calculations.

Augmentation operation field 750—its content distin-
guishes which one of a variety of different operations to be
performed in addition to the base operation. This field is
context specific. In one embodiment of the invention, this
field is divided into a class field 768, an alpha field 752, and
a beta field 754. The augmentation operation field 750
allows common groups of operations to be performed in a
single instruction rather than 2, 3, or 4 instructions.

Scale field 760—its content allows for the scaling of the
index field’s content for memory address generation (e.g.,
for address generation that uses 2°“““*index+base).

Displacement Field 762A—its content is used as part of
memory address generation (e.g., for address generation that
uses 2°°“¢*index+base+displacement).

Displacement Factor Field 762B (note that the juxtapo-
sition of displacement field 762 A directly over displacement
factor field 762B indicates one or the other is used)—its
content is used as part of address generation; it specifies a
displacement factor that is to be scaled by the size of a
memory access (N)—where N is the number of bytes in the
memory access (e.g., for address generation that uses
2selexindex+base+scaled displacement). Redundant low-
order bits are ignored and hence, the displacement factor
field’s content is multiplied by the memory operands total
size (N) in order to generate the final displacement to be
used in calculating an effective address. The value of N is
determined by the processor hardware at runtime based on
the full opcode field 774 (described later herein) and the data
manipulation field 754C. The displacement field 762A and
the displacement factor field 762B are optional in the sense
that they are not used for the no memory access 705
instruction templates and/or different embodiments may
implement only one or none of the two.

Data element width field 764—its content distinguishes
which one of a number of data element widths is to be used
(in some embodiments for all instructions; in other embodi-
ments for only some of the instructions). This field is
optional in the sense that it is not needed if only one data
element width is supported and/or data element widths are
supported using some aspect of the opcodes.

Write mask field 770—its content controls, on a per data
element position basis, whether that data element position in
the destination vector operand reflects the result of the base
operation and augmentation operation. Class A instruction
templates support merging-writemasking, while class B
instruction templates support both merging- and zeroing-
writemasking. When merging, vector masks allow any set of
elements in the destination to be protected from updates
during the execution of any operation (specified by the base
operation and the augmentation operation); in other one
embodiment, preserving the old value of each element of the
destination where the corresponding mask bit has a 0. In
contrast, when zeroing vector masks allow any set of ele-
ments in the destination to be zeroed during the execution of
any operation (specified by the base operation and the
augmentation operation); in one embodiment, an element of
the destination is set to 0 when the corresponding mask bit
has a 0 value. A subset of this functionality is the ability to

US 9,436,435 B2

13

control the vector length of the operation being performed
(that is, the span of elements being modified, from the first
to the last one); however, it is not necessary that the elements
that are modified be consecutive. Thus, the write mask field
770 allows for partial vector operations, including loads,
stores, arithmetic, logical, etc. While embodiments of the
invention are described in which the write mask field’s 770
content selects one of a number of write mask registers that
contains the write mask to be used (and thus the write mask
field’s 770 content indirectly identifies that masking to be
performed), alternative embodiments instead or additional
allow the mask write field’s 770 content to directly specify
the masking to be performed.

Immediate field 772—its content allows for the specifi-
cation of an immediate. This field is optional in the sense
that is it not present in an implementation of the generic
vector friendly format that does not support immediate and
it is not present in instructions that do not use an immediate.

Class field 768—its content distinguishes between differ-
ent classes of instructions. With reference to FIGS. 7A-B,
the contents of this field select between class A and class B
instructions. In FIGS. 7A-B, rounded corner squares are
used to indicate a specific value is present in a field (e.g.,
class A 768A and class B 768B for the class field 768
respectively in FIGS. 7A-B).

Instruction Templates of Class A

In the case of the non-memory access 705 instruction
templates of class A, the alpha field 752 is interpreted as an
RS field 752 A, whose content distinguishes which one of the
different augmentation operation types are to be performed
(e.g., round 752A.1 and data transform 752A.2 are respec-
tively specified for the no memory access, round type
operation 710 and the no memory access, data transform
type operation 715 instruction templates), while the beta
field 754 distinguishes which of the operations of the
specified type is to be performed. In the no memory access
705 instruction templates, the scale field 760, the displace-
ment field 762A, and the displacement scale filed 762B are
not present.

No-Memory Access Instruction Templates—Full Round
Control Type Operation

In the no memory access full round control type operation
710 instruction template, the beta field 754 is interpreted as
a round control field 754A, whose content(s) provide static
rounding. While in the described embodiments of the inven-
tion the round control field 754A includes a suppress all
floating point exceptions (SAE) field 756 and a round
operation control field 758, alternative embodiments may
support may encode both these concepts into the same field
or only have one or the other of these concepts/fields (e.g.,
may have only the round operation control field 758).

SAE field 756—its content distinguishes whether or not to
disable the exception event reporting; when the SAE field’s
756 content indicates suppression is enabled, a given
instruction does not report any kind of floating-point excep-
tion flag and does not raise any floating point exception
handler.

Round operation control field 758—its content distin-
guishes which one of a group of rounding operations to
perform (e.g., Round-up, Round-down, Round-towards-zero
and Round-to-nearest). Thus, the round operation control
field 758 allows for the changing of the rounding mode on
a per instruction basis. In one embodiment of the invention
where a processor includes a control register for specifying
rounding modes, the round operation control field’s 750
content overrides that register value.

10

15

20

25

30

35

40

45

55

60

65

14

No Memory Access Instruction Templates—Data Trans-
form Type Operation

In the no memory access data transform type operation
715 instruction template, the beta field 754 is interpreted as
a data transform field 754B, whose content distinguishes
which one of a number of data transforms is to be performed
(e.g., no data transform, swizzle, broadcast).

In the case of a memory access 720 instruction template
of class A, the alpha field 752 is interpreted as an eviction
hint field 752B, whose content distinguishes which one of
the eviction hints is to be used (in FIG. 7A, temporal 752B.1
and non-temporal 752B.2 are respectively specified for the
memory access, temporal 725 instruction template and the
memory access, non-temporal 730 instruction template),
while the beta field 754 is interpreted as a data manipulation
field 754C, whose content distinguishes which one of a
number of data manipulation operations (also known as
primitives) is to be performed (e.g., no manipulation; broad-
cast; up conversion of a source; and down conversion of a
destination). The memory access 720 instruction templates
include the scale field 760, and optionally the displacement
field 762A or the displacement scale field 762B.

Vector memory instructions perform vector loads from
and vector stores to memory, with conversion support. As
with regular vector instructions, vector memory instructions
transfer data from/to memory in a data element-wise fash-
ion, with the elements that are actually transferred is dictated
by the contents of the vector mask that is selected as the
write mask.

Memory Access Instruction Templates—Temporal

Temporal data is data likely to be reused soon enough to
benefit from caching. This is, however, a hint, and different
processors may implement it in different ways, including
ignoring the hint entirely.

Memory Access Instruction Templates—Non-Temporal

Non-temporal data is data unlikely to be reused soon
enough to benefit from caching in the 1st-level cache and
should be given priority for eviction. This is, however, a
hint, and different processors may implement it in different
ways, including ignoring the hint entirely.

Instruction Templates of Class B

In the case of the instruction templates of class B, the
alpha field 752 is interpreted as a write mask control (Z) field
752C, whose content distinguishes whether the write mask-
ing controlled by the write mask field 770 should be a
merging or a zeroing.

In the case of the non-memory access 705 instruction
templates of class B, part of the beta field 754 is interpreted
as an RL field 757 A, whose content distinguishes which one
of the different augmentation operation types are to be
performed (e.g., round 757A.1 and vector length (VSIZE)
757A.2 are respectively specified for the no memory access,
write mask control, partial round control type operation 712
instruction template and the no memory access, write mask
control, VSIZE type operation 717 instruction template),
while the rest of the beta field 754 distinguishes which of the
operations of the specified type is to be performed. In the no
memory access 705 instruction templates, the scale field
760, the displacement field 762A, and the displacement
scale filed 762B are not present.

In the no memory access, write mask control, partial
round control type operation 710 instruction template, the
rest of the beta field 754 is interpreted as a round operation
field 759 A and exception event reporting is disabled (a given
instruction does not report any kind of floating-point excep-
tion flag and does not raise any floating point exception
handler).

US 9,436,435 B2

15

Round operation control field 759 A—just as round opera-
tion control field 758, its content distinguishes which one of
a group of rounding operations to perform (e.g., Round-up,
Round-down, Round-towards-zero and Round-to-nearest).
Thus, the round operation control field 759A allows for the
changing of the rounding mode on a per instruction basis. In
one embodiment of the invention where a processor includes
a control register for specifying rounding modes, the round
operation control field’s 750 content overrides that register
value.

In the no memory access, write mask control, VSIZE type
operation 717 instruction template, the rest of the beta field
754 is interpreted as a vector length field 759B, whose
content distinguishes which one of a number of data vector
lengths is to be performed on (e.g., 128, 256, or 512 byte).

In the case of a memory access 720 instruction template
of class B, part of the beta field 754 is interpreted as a
broadcast field 757B, whose content distinguishes whether
or not the broadcast type data manipulation operation is to
be performed, while the rest of the beta field 754 is inter-
preted the vector length field 759B. The memory access 720
instruction templates include the scale field 760, and option-
ally the displacement field 762A or the displacement scale
field 762B.

With regard to the generic vector friendly instruction
format 700, a full opcode field 774 is shown including the
format field 740, the base operation field 742, and the data
element width field 764. While one embodiment is shown
where the full opcode field 774 includes all of these fields,
the full opcode field 774 includes less than all of these fields
in embodiments that do not support all of them. The full
opcode field 774 provides the operation code (opcode).

The augmentation operation field 750, the data element
width field 764, and the write mask field 770 allow these
features to be specified on a per instruction basis in the
generic vector friendly instruction format.

The combination of write mask field and data element
width field create typed instructions in that they allow the
mask to be applied based on different data element widths.

The various instruction templates found within class A
and class B are beneficial in different situations. In some
embodiments of the invention, different processors or dif-
ferent cores within a processor may support only class A,
only class B, or both classes. For instance, a high perfor-
mance general purpose out-of-order core intended for gen-
eral-purpose computing may support only class B, a core
intended primarily for graphics and/or scientific (through-
put) computing may support only class A, and a core
intended for both may support both (of course, a core that
has some mix of templates and instructions from both
classes but not all templates and instructions from both
classes is within the purview of the invention). Also, a single
processor may include multiple cores, all of which support
the same class or in which different cores support different
class. For instance, in a processor with separate graphics and
general purpose cores, one of the graphics cores intended
primarily for graphics and/or scientific computing may
support only class A, while one or more of the general
purpose cores may be high performance general purpose
cores with out of order execution and register renaming
intended for general-purpose computing that support only
class B. Another processor that does not have a separate
graphics core, may include one more general purpose in-
order or out-of-order cores that support both class A and
class B. Of course, features from one class may also be
implement in the other class in different embodiments of the
invention. Programs written in a high level language would

10

25

40

45

50

16

be put (e.g., just in time compiled or statically compiled)
into an variety of different executable forms, including: 1) a
form having only instructions of the class(es) supported by
the target processor for execution; or 2) a form having
alternative routines written using different combinations of
the instructions of all classes and having control flow code
that selects the routines to execute based on the instructions
supported by the processor which is currently executing the
code.

Exemplary Specific Vector Friendly Instruction Format

FIG. 8 is a block diagram illustrating an exemplary
specific vector friendly instruction format according to
embodiments of the invention. FIG. 8 shows a specific
vector friendly instruction format 800 that is specific in the
sense that it specifies the location, size, interpretation, and
order of the fields, as well as values for some of those fields.
The specific vector friendly instruction format 800 may be
used to extend the x86 instruction set, and thus some of the
fields are similar or the same as those used in the existing
x86 instruction set and extension thereof (e.g., AVX). This
format remains consistent with the prefix encoding field, real
opcode byte field, MOD R/M field, SIB field, displacement
field, and immediate fields of the existing x86 instruction set
with extensions. The fields from FIG. 7 into which the fields
from FIG. 8 map are illustrated.

It should be understood that, although embodiments of the
invention are described with reference to the specific vector
friendly instruction format 800 in the context of the generic
vector friendly instruction format 700 for illustrative pur-
poses, the invention is not limited to the specific vector
friendly instruction format 800 except where claimed. For
example, the generic vector friendly instruction format 700
contemplates a variety of possible sizes for the various
fields, while the specific vector friendly instruction format
800 is shown as having fields of specific sizes. By way of
specific example, while the data element width field 764 is
illustrated as a one bit field in the specific vector friendly
instruction format 800, the invention is not so limited (that
is, the generic vector friendly instruction format 700 con-
templates other sizes of the data element width field 764).

The generic vector friendly instruction format 700
includes the following fields listed below in the order
illustrated in FIG. 8A.

EVEX Prefix (Bytes 0-3) 802—is encoded in a four-byte
form.

Format Field 740 (EVEX Byte 0, bits [7:0])—the first
byte (EVEX Byte 0) is the format field 740 and it contains
0x62 (the unique value used for distinguishing the vector
friendly instruction format in one embodiment of the inven-
tion).

The second-fourth bytes (EVEX Bytes 1-3) include a
number of bit fields providing specific capability.

REX field 805 (EVEX Byte 1, bits [7-5])—consists of a
EVEXR bit field (EVEX Byte 1, bit [7]-R), EVEX.X bit
field (EVEX byte 1, bit [6]-X), and 757BEX byte 1, bit[5]-
B). The EVEX.R, EVEX X, and EVEX B bit fields provide
the same functionality as the corresponding VEX bit fields,
and are encoded using is complement form, i.e. ZMMO is
encoded as 1111B, ZMMI15 is encoded as 0000B. Other
fields of the instructions encode the lower three bits of the
register indexes as is known in the art (rrr, xxx, and bbb), so
that Rrrr, Xxxx, and Bbbb may be formed by adding
EVEXR, EVEX X, and EVEX.B.

REX' field 710—this is the first part of the REX' field 710
and is the EVEX.R' bit field (EVEX Byte 1, bit [4]-R") that
is used to encode either the upper 16 or lower 16 of the
extended 32 register set. In one embodiment of the inven-

US 9,436,435 B2

17

tion, this bit, along with others as indicated below, is stored
in bit inverted format to distinguish (in the well-known x86
32-bit mode) from the BOUND instruction, whose real
opcode byte is 62, but does not accept in the MOD R/M field
(described below) the value of 11 in the MOD field; alter-
native embodiments of the invention do not store this and the
other indicated bits below in the inverted format. A value of
1 is used to encode the lower 16 registers. In other words,
R'Rrrr is formed by combining EVEX.R', EVEX R, and the
other RRR from other fields.

Opcode map field 815 (EVEX byte 1, bits [3:0]-
mmmm)—its content encodes an implied leading opcode
byte (OF, OF 38, or OF 3).

Data element width field 764 (EVEX byte 2, bit [7]-W)—
is represented by the notation EVEX.W. EVEX.W is used to
define the granularity (size) of the datatype (either 32-bit
data elements or 64-bit data elements).

EVEX.vvvv 820 (EVEX Byte 2, bits [6:3]-vvvv)—the
role of EVEX .vvvv may include the following: 1) EVEX.v-
vvv encodes the first source register operand, specified in
inverted (1s complement) form and is valid for instructions
with 2 or more source operands; 2) EVEX.vvvv encodes the
destination register operand, specified in is complement
form for certain vector shifts; or 3) EVEX.vvvv does not
encode any operand, the field is reserved and should contain
1111b. Thus, EVEX.vvvv field 820 encodes the 4 low-order
bits of the first source register specifier stored in inverted (1s
complement) form. Depending on the instruction, an extra
different EVEX bit field is used to extend the specifier size
to 32 registers.

EVEX.U 768 Class field (EVEX byte 2, bit [2]-U)—If
EVEX.U=0, it indicates class A or EVEX.UO, if
EVEX.U=1, it indicates class B or EVEX.U1.

Prefix encoding field 825 (EVEX byte 2, bits [1:0]-pp)—
provides additional bits for the base operation field. In
addition to providing support for the legacy SSE instructions
in the EVEX prefix format, this also has the benefit of
compacting the SIMD prefix (rather than requiring a byte to
express the SIMD prefix, the EVEX prefix requires only 2
bits). In one embodiment, to support legacy SSE instructions
that use a SIMD prefix (66H, F2H, F3H) in both the legacy
format and in the EVEX prefix format, these legacy SIMD
prefixes are encoded into the SIMD prefix encoding field;
and at runtime are expanded into the legacy SIMD prefix
prior to being provided to the decoder’s PLA (so the PLA
can execute both the legacy and EVEX format of these
legacy instructions without modification). Although newer
instructions could use the EVEX prefix encoding field’s
content directly as an opcode extension, certain embodi-
ments expand in a similar fashion for consistency but allow
for different meanings to be specified by these legacy SIMD
prefixes. An alternative embodiment may redesign the PLA
to support the 2 bit SIMD prefix encodings, and thus not
require the expansion.

Alpha field 752 (EVEX byte 3, bit [7]-EH; also known as
EVEX.EH, EVEX.rs, EVEX RL, EVEX .write mask control,
and EVEX.N; also illustrated with a)—as previously
described, this field is context specific.

Beta field 754 (EVEX byte 3, bits [6:4]-SSS, also known
as EVEXs, o, EVEXur, o, EVEX.rrl, EVEX.LLO, EVEX-
.LLB; also illustrated with ff)}—as previously described,
this field is context specific.

REX' field 710—this is the remainder of the REX' field
and is the EVEX. V' bit field (EVEX Byte 3, bit [3]-V") that
may be used to encode either the upper 16 or lower 16 of the
extended 32 register set. This bit is stored in bit inverted

10

25

40

45

50

55

18
format. A value of 1 is used to encode the lower 16 registers.
In other words, V'VVVV is formed by combining EVEX. V',
EVEX.vvvv.

Write mask field 770 (EVEX byte 3, bits [2:0]-kkk)—its
content specifies the index of a register in the write mask
registers as previously described. In one embodiment of the
invention, the specific value EVEX kkk=000 has a special
behavior implying no write mask is used for the particular
instruction (this may be implemented in a variety of ways
including the use of a write mask hardwired to all ones or
hardware that bypasses the masking hardware).

Real Opcode Field 830 (Byte 4) is also known as the
opcode byte. Part of the opcode is specified in this field.

MOD R/M Field 840 (Byte 5) includes MOD field 842,
Reg field 844, and R/M field 846. As previously described,
the MOD field’s 842 content distinguishes between memory
access and non-memory access operations. The role of Reg
field 844 can be summarized to two situations: encoding
either the destination register operand or a source register
operand, or be treated as an opcode extension and not used
to encode any instruction operand. The role of R/M field 846
may include the following: encoding the instruction operand
that references a memory address, or encoding either the
destination register operand or a source register operand.

Scale, Index, Base (SIB) Byte (Byte 6)—As previously
described, the scale field’s 750 content is used for memory
address generation. SIB.xxx 854 and SIB.bbb 856—the
contents of these fields have been previously referred to with
regard to the register indexes Xxxx and Bbbb.

Displacement field 762A (Bytes 7-10)—when MOD field
842 contains 10, bytes 7-10 are the displacement field 762A,
and it works the same as the legacy 32-bit displacement
(disp32) and works at byte granularity.

Displacement factor field 762B (Byte 7)—when MOD
field 842 contains 01, byte 7 is the displacement factor field
762B. The location of this field is that same as that of the
legacy x86 instruction set 8-bit displacement (disp8), which
works at byte granularity. Since disp8 is sign extended, it can
only address between —128 and 127 bytes offsets; in terms
of 64 byte cache lines, disp8 uses 8 bits that can be set to
only four really useful values —128, —64, 0, and 64; since a
greater range is often needed, disp32 is used; however,
disp32 requires 4 bytes. In contrast to disp8 and disp32, the
displacement factor field 762B is a reinterpretation of disp8;
when using displacement factor field 762B, the actual dis-
placement is determined by the content of the displacement
factor field multiplied by the size of the memory operand
access (N). This type of displacement is referred to as
disp8*N. This reduces the average instruction length (a
single byte of used for the displacement but with a much
greater range). Such compressed displacement is based on
the assumption that the effective displacement is multiple of
the granularity of the memory access, and hence, the redun-
dant low-order bits of the address offset do not need to be
encoded. In other words, the displacement factor field 762B
substitutes the legacy x86 instruction set 8-bit displacement.
Thus, the displacement factor field 762B is encoded the
same way as an x86 instruction set 8-bit displacement (so no
changes in the ModRM/SIB encoding rules) with the only
exception that disp8 is overloaded to disp8*N. In other
words, there are no changes in the encoding rules or encod-
ing lengths but only in the interpretation of the displacement

US 9,436,435 B2

19

value by hardware (which needs to scale the displacement
by the size of the memory operand to obtain a byte-wise
address offset).

Immediate field 772 operates as previously described.

Full Opcode Field

FIG. 8B is a block diagram illustrating the fields of the
specific vector friendly instruction format 800 that make up
the full opcode field 774 according to one embodiment of the
invention. Specifically, the full opcode field 774 includes the
format field 740, the base operation field 742, and the data
element width (W) field 764. The base operation field 742
includes the prefix encoding field 825, the opcode map field
815, and the real opcode field 830.

Register Index Field

FIG. 8C is a block diagram illustrating the fields of the
specific vector friendly instruction format 800 that make up
the register index field 744 according to one embodiment of
the invention. Specifically, the register index field 744
includes the REX field 805, the REX' field 810, the MODR/
M.reg field 844, the MODR/M.r/m field 846, the VVVV
field 820, xxx field 854, and the bbb field 856.

Augmentation Operation Field

FIG. 8D is a block diagram illustrating the fields of the
specific vector friendly instruction format 800 that make up
the augmentation operation field 750 according to one
embodiment of the invention. When the class (U) field 768
contains 0, it signifies EVEX.UO (class A 768A); when it
contains 1, it signifies EVEX.U1 (class B 768B). When U=0
and the MOD field 842 contains 11 (signifying a no memory
access operation), the alpha field 752 (EVEX byte 3, bit
[7]-ER) is interpreted as the rs field 752A. When the rs field
752A contains a 1 (round 752A.1), the beta field 754 (EVEX
byte 3, bits [6:4]-SSS) is interpreted as the round control
field 754A. The round control field 754 A includes a one bit
SAE field 756 and a two bit round operation field 758. When
the rs field 752A contains a 0 (data transform 752A.2), the
beta field 754 (EVEX byte 3, bits [6:4]-SSS) is interpreted
as a three bit data transform field 754B. When U=0 and the
MOD field 842 contains 00, 01, or 10 (signifying a memory
access operation), the alpha field 752 (EVEX byte 3, bit
[7]-EH) is interpreted as the eviction hint (EH) field 752B
and the beta field 754 (EVEX byte 3, bits [6:4]-SSS) is
interpreted as a three bit data manipulation field 754C.

When U=1, the alpha field 752 (EVEX byte 3, bit [7]-EH)
is interpreted as the write mask control (7) field 752C. When
U=1 and the MOD field 842 contains 11 (signifying a no
memory access operation), part of the beta field 754 (EVEX
byte 3, bit [4]-S,) is interpreted as the RL field 757A; when
it contains a 1 (round 757A.1) the rest of the beta field 754
(EVEX byte 3, bit [6-5]-S,_) is interpreted as the round
operation field 759A, while when the RL field 757 A contains
a 0 (VSIZE 757.A2) the rest of the beta field 754 (EVEX
byte 3, bit [6-5]-S,_,) is interpreted as the vector length field
759B (EVEX byte 3, bit [6-5]-L, ;). When U=1 and the
MOD field 842 contains 00, 01, or 10 (signifying a memory
access operation), the beta field 754 (EVEX byte 3, bits
[6:4]-SSS) is interpreted as the vector length field 759B
(EVEX byte 3, bit [6-5]-L,_,) and the broadcast field 757B
(EVEX byte 3, bit [4]-B).

Exemplary Register Architecture

FIG. 9 is a block diagram of a register architecture 900
according to one embodiment of the invention. In the
embodiment illustrated, there are 32 vector registers 910 that
are 512 bits wide; these registers are referenced as zmmO
through zmm31. The lower order 256 bits of the lower 16
zmm registers are overlaid on registers ymmO-16. The lower
order 128 bits of the lower 16 zmm registers (the lower order

20

25

40

45

55

60

20

128 bits of the ymm registers) are overlaid on registers
xmmO-15. The specific vector friendly instruction format
800 operates on these overlaid register file as illustrated in
the below tables.

Adjustable

Vector Length Class Operations ~ Registers

Instruction A (FIG. 710, 715, Zmm

Templates that 7TA; U=0) 725,730 registers (the

do not include vector length is

the vector length 64 byte)

field 759B B (FIG. 712 zmm

7B; U=1) registers (the

vector length is
64 byte)

Instruction B (FIG. 717, 727 Zmm,

Templates that 7B; U=1) ymm, or Xmm

do include the registers (the

vector length vector length is

field 759B 64 byte, 32 byte,
or 16 byte)

depending on the
vector length
field 759B

In other words, the vector length field 759B sclects
between a maximum length and one or more other shorter
lengths, where each such shorter length is half the length of
the preceding length; and instructions templates without the
vector length field 759B operate on the maximum vector
length. Further, in one embodiment, the class B instruction
templates of the specific vector friendly instruction format
800 operate on packed or scalar single/double-precision
floating point data and packed or scalar integer data. Scalar
operations are operations performed on the lowest order data
element position in an zmm/ymn/xmm register; the higher
order data element positions are either left the same as they
were prior to the instruction or zeroed depending on the
embodiment.

Write mask registers 915—in the embodiment illustrated,
there are 8 write mask registers (kO through k7), each 64 bits
in size. In an alternate embodiment, the write mask registers
915 are 16 bits in size. As previously described, in one
embodiment of the invention, the vector mask register kO
cannot be used as a write mask; when the encoding that
would normally indicate kO is used for a write mask, it
selects a hardwired write mask of OxFFFF, effectively dis-
abling write masking for that instruction.

General-purpose registers 925—in the embodiment illus-
trated, there are sixteen 64-bit general-purpose registers that
are used along with the existing x86 addressing modes to
address memory operands. These registers are referenced by
the names RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP,
and R8 through R15.

Scalar floating point stack register file (x87 stack) 945, on
which is aliased the MMX packed integer flat register file
950—in the embodiment illustrated, the x87 stack is an
eight-element stack used to perform scalar floating-point
operations on 32/64/80-bit floating point data using the x87
instruction set extension; while the MMX registers are used
to perform operations on 64-bit packed integer data, as well
as to hold operands for some operations performed between
the MMX and XMM registers.

Alternative embodiments of the invention may use wider
or narrower registers. Additionally, alternative embodiments
of'the invention may use more, less, or different register files
and registers.

US 9,436,435 B2

21

Exemplary Core Architectures, Processors, and Computer
Architectures

Processor cores may be implemented in different ways,
for different purposes, and in different processors. For
instance, implementations of such cores may include: 1) a
general purpose in-order core intended for general-purpose
computing; 2) a high performance general purpose out-of-
order core intended for general-purpose computing; 3) a
special purpose core intended primarily for graphics and/or
scientific (throughput) computing. Implementations of dif-
ferent processors may include: 1) a CPU including one or
more general purpose in-order cores intended for general-
purpose computing and/or one or more general purpose
out-of-order cores intended for general-purpose computing;
and 2) a coprocessor including one or more special purpose
cores intended primarily for graphics and/or scientific
(throughput). Such different processors lead to different
computer system architectures, which may include: 1) the
coprocessor on a separate chip from the CPU; 2) the
coprocessor on a separate die in the same package as a CPU;
3) the coprocessor on the same die as a CPU (in which case,
such a coprocessor is sometimes referred to as special
purpose logic, such as integrated graphics and/or scientific
(throughput) logic, or as special purpose cores); and 4) a
system on a chip that may include on the same die the
described CPU (sometimes referred to as the application
core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Exemplary core
architectures are described next, followed by descriptions of
exemplary processors and computer architectures.

Exemplary Core Architectures

In-Order and Out-of-Order Core Block Diagram

FIG. 10A is a block diagram illustrating both an exem-
plary in-order pipeline and an exemplary register renaming,
out-of-order issue/execution pipeline according to embodi-
ments of the invention. FIG. 10B is a block diagram illus-
trating both an exemplary embodiment of an in-order archi-
tecture core and an exemplary register renaming, out-of-
order issue/execution architecture core to be included in a
processor according to embodiments of the invention. The
solid lined boxes in FIGS. 10A-B illustrate the in-order
pipeline and in-order core, while the optional addition of the
dashed lined boxes illustrates the register renaming, out-of-
order issue/execution pipeline and core. Given that the
in-order aspect is a subset of the out-of-order aspect, the
out-of-order aspect will be described.

In FIG. 10A, a processor pipeline 1000 includes a fetch
stage 1002, a length decode stage 1004, a decode stage 1006,
an allocation stage 1008, a renaming stage 1010, a sched-
uling (also known as a dispatch or issue) stage 1012, a
register read/memory read stage 1014, an execute stage
1016, a write back/memory write stage 1018, an exception
handling stage 1022, and a commit stage 1024.

FIG. 10B shows processor core 1090 including a front end
unit 1030 coupled to an execution engine unit 1050, and
both are coupled to a memory unit 1070. The core 1090 may
be a reduced instruction set computing (RISC) core, a
complex instruction set computing (CISC) core, a very long
instruction word (VLIW) core, or a hybrid or alternative
core type. As yet another option, the core 1090 may be a
special-purpose core, such as, for example, a network or
communication core, compression engine, COprocessor core,
general purpose computing graphics processing unit
(GPGPU) core, graphics core, or the like.

The front end unit 1030 includes a branch prediction unit
1032 coupled to an instruction cache unit 1034, which is
coupled to an instruction translation lookaside buffer (TLB)

20

25

30

35

40

45

55

22

1036, which is coupled to an instruction fetch unit 1038,
which is coupled to a decode unit 1040. The decode unit
1040 (or decoder) may decode instructions, and generate as
an output one or more micro-operations, micro-code entry
points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise reflect,
or are derived from, the original instructions. The decode
unit 1040 may be implemented using various different
mechanisms. Examples of suitable mechanisms include, but
are not limited to, look-up tables, hardware implementa-
tions, programmable logic arrays (PLAs), microcode read
only memories (ROMs), etc. In one embodiment, the core
1090 includes a microcode ROM or other medium that
stores microcode for certain macroinstructions (e.g., in
decode unit 1040 or otherwise within the front end unit
1030). The decode unit 1040 is coupled to a rename/
allocator unit 1052 in the execution engine unit 1050.

The execution engine unit 1050 includes the rename/
allocator unit 1052 coupled to a retirement unit 1054 and a
set of one or more scheduler unit(s) 1056. The scheduler
unit(s) 1056 represents any number of different schedulers,
including reservations stations, central instruction window,
etc. The scheduler unit(s) 1056 is coupled to the physical
register file(s) unit(s) 1058. Each of the physical register
file(s) units 1058 represents one or more physical register
files, different ones of which store one or more different data
types, such as scalar integer, scalar floating point, packed
integer, packed floating point, vector integer, vector floating
point, status (e.g., an instruction pointer that is the address
of the next instruction to be executed), etc. In one embodi-
ment, the physical register file(s) unit 1058 comprises a
vector registers unit, a write mask registers unit, and a scalar
registers unit. These register units may provide architectural
vector registers, vector mask registers, and general purpose
registers. The physical register file(s) unit(s) 1058 is over-
lapped by the retirement unit 1054 to illustrate various ways
in which register renaming and out-of-order execution may
be implemented (e.g., using a reorder buffer(s) and a retire-
ment register file(s); using a future file(s), a history buffer(s),
and a retirement register file(s); using a register maps and a
pool of registers; etc.). The retirement unit 1054 and the
physical register file(s) unit(s) 1058 are coupled to the
execution cluster(s) 1060. The execution cluster(s) 1060
includes a set of one or more execution units 1062 and a set
of one or more memory access units 1064. The execution
units 1062 may perform various operations (e.g., shifts,
addition, subtraction, multiplication) and on various types of
data (e.g., scalar floating point, packed integer, packed
floating point, vector integer, vector floating point). While
some embodiments may include a number of execution units
dedicated to specific functions or sets of functions, other
embodiments may include only one execution unit or mul-
tiple execution units that all perform all functions. The
scheduler unit(s) 1056, physical register file(s) unit(s) 1058,
and execution cluster(s) 1060 are shown as being possibly
plural because certain embodiments create separate pipe-
lines for certain types of data/operations (e.g., a scalar
integer pipeline, a scalar floating point/packed integer/
packed floating point/vector integer/vector floating point
pipeline, and/or a memory access pipeline that each have
their own scheduler unit, physical register file(s) unit, and/or
execution cluster—and in the case of a separate memory
access pipeline, certain embodiments are implemented in
which only the execution cluster of this pipeline has the
memory access unit(s) 1064). It should also be understood

US 9,436,435 B2

23

that where separate pipelines are used, one or more of these
pipelines may be out-of-order issue/execution and the rest
in-order.

The set of memory access units 1064 is coupled to the
memory unit 1070, which includes a data TLB unit 1072
coupled to a data cache unit 1074 coupled to a level 2 (L2)
cache unit 1076. In one exemplary embodiment, the memory
access units 1064 may include a load unit, a store address
unit, and a store data unit, each of which is coupled to the
data TLB unit 1072 in the memory unit 1070. The instruc-
tion cache unit 1034 is further coupled to a level 2 (L2)
cache unit 1076 in the memory unit 1070. The [.2 cache unit
1076 is coupled to one or more other levels of cache and
eventually to a main memory.

By way of example, the exemplary register renaming,
out-of-order issue/execution core architecture may imple-
ment the pipeline 1000 as follows: 1) the instruction fetch
1038 performs the fetch and length decoding stages 1002
and 1004; 2) the decode unit 1040 performs the decode stage
1006; 3) the rename/allocator unit 1052 performs the allo-
cation stage 1008 and renaming stage 1010; 4) the scheduler
unit(s) 1056 performs the schedule stage 1012; 5) the
physical register file(s) unit(s) 1058 and the memory unit
1070 perform the register read/memory read stage 1014; the
execution cluster 1060 perform the execute stage 1016; 6)
the memory unit 1070 and the physical register file(s) unit(s)
1058 perform the write back/memory write stage 1018; 7)
various units may be involved in the exception handling
stage 1022; and 8) the retirement unit 1054 and the physical
register file(s) unit(s) 1058 perform the commit stage 1024.

The core 1090 may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set
of MIPS Technologies of Sunnyvale, Calif.; the ARM
instruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, Calif.), including
the instruction(s) described herein. In one embodiment, the
core 1090 includes logic to support a packed data instruction
set extension (e.g., AVX1, AVX2, and/or some form of the
generic vector friendly instruction format (U=0 and/or U=1)
previously described), thereby allowing the operations used
by many multimedia applications to be performed using
packed data.

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
or threads), and may do so in a variety of ways including
time sliced multithreading, simultaneous multithreading
(where a single physical core provides a logical core for each
of the threads that physical core is simultaneously multi-
threading), or a combination thereof (e.g., time sliced fetch-
ing and decoding and simultaneous multithreading thereat-
ter such as in the Intel® Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes sepa-
rate instruction and data cache units 1034/1074 and a shared
L2 cache unit 1076, alternative embodiments may have a
single internal cache for both instructions and data, such as,
for example, a Level 1 (L1) internal cache, or multiple levels
of internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor.
Alternatively, all of the cache may be external to the core
and/or the processor.

15

40

45

55

24

Specific Exemplary in-Order Core Architecture

FIGS. 11 A-B illustrate a block diagram of a more specific
exemplary in-order core architecture, which core would be
one of several logic blocks (including other cores of the
same type and/or different types) in a chip. The logic blocks
communicate through a high-bandwidth interconnect net-
work (e.g., a ring network) with some fixed function logic,
memory [/O interfaces, and other necessary 1/O logic,
depending on the application.

FIG. 11A is a block diagram of a single processor core,
along with its connection to the on-die interconnect network
1102 and with its local subset of the Level 2 (L.2) cache
1104, according to embodiments of the invention. In one
embodiment, an instruction decoder 1100 supports the x86
instruction set with a packed data instruction set extension.
An L1 cache 1106 allows low-latency accesses to cache
memory into the scalar and vector units. While in one
embodiment (to simplify the design), a scalar unit 1108 and
a vector unit 1110 use separate register sets (respectively,
scalar registers 1112 and vector registers 1114) and data
transferred between them is written to memory and then read
back in from a level 1 (L1) cache 1106, alternative embodi-
ments of the invention may use a different approach (e.g.,
use a single register set or include a communication path that
allow data to be transferred between the two register files
without being written and read back).

The local subset of the 1.2 cache 1104 is part of a global
L2 cache that is divided into separate local subsets, one per
processor core. Each processor core has a direct access path
to its own local subset of the 1.2 cache 1104. Data read by
aprocessor core is stored in its L2 cache subset 1104 and can
be accessed quickly, in parallel with other processor cores
accessing their own local L2 cache subsets. Data written by
a processor core is stored in its own L2 cache subset 1104
and is flushed from other subsets, if necessary. The ring
network ensures coherency for shared data. The ring net-
work is bi-directional to allow agents such as processor
cores, .2 caches and other logic blocks to communicate with
each other within the chip. Each ring data-path is 1012-bits
wide per direction.

FIG. 11B is an expanded view of part of the processor
core in FIG. 11A according to embodiments of the invention.
FIG. 11B includes an L1 data cache 1106A part of the .1
cache 1104, as well as more detail regarding the vector unit
1110 and the vector registers 1114. Specifically, the vector
unit 1110 is a 16-wide vector processing unit (VPU) (see the
16-wide ALU 1128), which executes one or more of integer,
single-precision float, and double-precision float instruc-
tions. The VPU supports swizzling the register inputs with
swizzle unit 1120, numeric conversion with numeric convert
units 1122A-B, and replication with replication unit 1124 on
the memory input. Write mask registers 1126 allow predi-
cating resulting vector writes.

Processor with Integrated Memory Controller and Graph-
ics

FIG. 12 is a block diagram of a processor 1200 that may
have more than one core, may have an integrated memory
controller, and may have integrated graphics according to
embodiments of the invention. The solid lined boxes in FIG.
12 illustrate a processor 1200 with a single core 1202A, a
system agent 1210, a set of one or more bus controller units
1216, while the optional addition of the dashed lined boxes
illustrates an alternative processor 1200 with multiple cores
1202A-N, a set of one or more integrated memory controller
unit(s) 1214 in the system agent unit 1210, and special
purpose logic 1208.

US 9,436,435 B2

25

Thus, different implementations of the processor 1200
may include: 1) a CPU with the special purpose logic 1208
being integrated graphics and/or scientific (throughput)
logic (which may include one or more cores), and the cores
1202A-N being one or more general purpose cores (e.g.,
general purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the
cores 1202A-N being a large number of special purpose
cores intended primarily for graphics and/or scientific
(throughput); and 3) a coprocessor with the cores 1202A-N
being a large number of general purpose in-order cores.
Thus, the processor 1200 may be a general-purpose proces-
sor, coprocessor or special-purpose processor, such as, for
example, a network or communication processor, compres-
sion engine, graphics processor, GPGPU (general purpose
graphics processing unit), a high-throughput many inte-
grated core (MIC) coprocessor (including 30 or more cores),
embedded processor, or the like. The processor may be
implemented on one or more chips. The processor 1200 may
be a part of and/or may be implemented on one or more
substrates using any of a number of process technologies,
such as, for example, BICMOS, CMOS, or NMOS.

The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache
units 1206, and external memory (not shown) coupled to the
set of integrated memory controller units 1214. The set of
shared cache units 1206 may include one or more mid-level
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or
other levels of cache, a last level cache (LLC), and/or
combinations thereof. While in one embodiment a ring
based interconnect unit 1212 interconnects the integrated
graphics logic 1208, the set of shared cache units 1206, and
the system agent unit 1210/integrated memory controller
unit(s) 1214, alternative embodiments may use any number
of well-known techniques for interconnecting such units. In
one embodiment, coherency is maintained between one or
more cache units 1206 and cores 1202-A-N.

In some embodiments, one or more of the cores 1202A-N
are capable of multi-threading. The system agent 1210
includes those components coordinating and operating cores
1202A-N. The system agent unit 1210 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 1202A-N and the
integrated graphics logic 1208. The display unit is for
driving one or more externally connected displays.

The cores 1202A-N may be homogenous or heteroge-
neous in terms of architecture instruction set; that is, two or
more of the cores 1202A-N may be capable of execution the
same instruction set, while others may be capable of execut-
ing only a subset of that instruction set or a different
instruction set.

Exemplary Computer Architectures

FIGS. 13-16 are block diagrams of exemplary computer
architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs,
personal digital assistants, engineering workstations, serv-
ers, network devices, network hubs, switches, embedded
processors, digital signal processors (DSPs), graphics
devices, video game devices, set-top boxes, micro control-
lers, cell phones, portable media players, hand held devices,
and various other electronic devices, are also suitable. In
general, a huge variety of systems or electronic devices
capable of incorporating a processor and/or other execution
logic as disclosed herein are generally suitable.

Referring now to FIG. 13, shown is a block diagram of a
system 1300 in accordance with one embodiment of the

20

25

30

40

45

65

26

present invention. The system 1300 may include one or
more processors 1310, 1315, which are coupled to a con-
troller hub 1320. In one embodiment the controller hub 1320
includes a graphics memory controller hub (GMCH) 1390
and an Input/Output Hub (IOH) 1350 (which may be on
separate chips); the GMCH 1390 includes memory and
graphics controllers to which are coupled memory 1340 and
a coprocessor 1345; the IOH 1350 is couples input/output
(I/0) devices 1360 to the GMCH 1390. Alternatively, one or
both of the memory and graphics controllers are integrated
within the processor (as described herein), the memory 1340
and the coprocessor 1345 are coupled directly to the pro-
cessor 1310, and the controller hub 1320 in a single chip
with the IOH 1350.

The optional nature of additional processors 1315 is
denoted in FIG. 13 with broken lines. Each processor 1310,
1315 may include one or more of the processing cores
described herein and may be some version of the processor
1200.

The memory 1340 may be, for example, dynamic random
access memory (DRAM), phase change memory (PCM), or
a combination of the two. For at least one embodiment, the
controller hub 1320 communicates with the processor(s)
1310, 1315 via a multi-drop bus, such as a frontside bus
(FSB), point-to-point interface such as QuickPath Intercon-
nect (QPI), or similar connection 1395.

In one embodiment, the coprocessor 1345 is a special-
purpose processor, such as, for example, a high-throughput
MIC processor, a network or communication processor,
compression engine, graphics processor, GPGPU, embed-
ded processor, or the like. In one embodiment, controller hub
1320 may include an integrated graphics accelerator.

There can be a variety of differences between the physical
resources 1310, 1315 in terms of a spectrum of metrics of
merit including architectural, microarchitectural, thermal,
power consumption characteristics, and the like.

In one embodiment, the processor 1310 executes instruc-
tions that control data processing operations of a general
type. Embedded within the instructions may be coprocessor
instructions. The processor 1310 recognizes these coproces-
sor instructions as being of a type that should be executed by
the attached coprocessor 1345. Accordingly, the processor
1310 issues these coprocessor instructions (or control sig-
nals representing coprocessor instructions) on a coprocessor
bus or other interconnect, to coprocessor 1345.
Coprocessor(s) 1345 accept and execute the received copro-
cessor instructions.

Referring now to FIG. 14, shown is a block diagram of a
first more specific exemplary system 1400 in accordance
with an embodiment of the present invention. As shown in
FIG. 14, multiprocessor system 1400 is a point-to-point
interconnect system, and includes a first processor 1470 and
a second processor 1480 coupled via a point-to-point inter-
connect 1450. Each of processors 1470 and 1480 may be
some version of the processor 1200. In one embodiment of
the invention, processors 1470 and 1480 are respectively
processors 1310 and 1315, while coprocessor 1438 is copro-
cessor 1345. In another embodiment, processors 1470 and
1480 are respectively processor 1310 coprocessor 1345.

Processors 1470 and 1480 are shown including integrated
memory controller (IMC) units 1472 and 1482, respectively.
Processor 1470 also includes as part of its bus controller
units point-to-point (P-P) interfaces 1476 and 1478; simi-
larly, second processor 1480 includes P-P interfaces 1486
and 1488. Processors 1470, 1480 may exchange information
via a point-to-point (P-P) interface 1450 using P-P interface
circuits 1478, 1488. As shown in FIG. 14, IMCs 1472 and

US 9,436,435 B2

27

1482 couple the processors to respective memories, namely
a memory 1432 and a memory 1434, which may be portions
of main memory locally attached to the respective proces-
SOIS.

Processors 1470, 1480 may each exchange information
with a chipset 1490 via individual P-P interfaces 1452, 1454
using point to point interface circuits 1476, 1494, 1486,
1498. Chipset 1490 may optionally exchange information
with the coprocessor 1438 via a high-performance interface
1439. In one embodiment, the coprocessor 1438 is a special-
purpose processor, such as, for example, a high-throughput
MIC processor, a network or communication processor,
compression engine, graphics processor, GPGPU, embed-
ded processor, or the like.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 1490 may be coupled to a first bus 1416 via an
interface 1496. In one embodiment, first bus 1416 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O
interconnect bus, although the scope of the present invention
is not so limited.

As shown in FIG. 14, various /O devices 1414 may be
coupled to first bus 1416, along with a bus bridge 1418
which couples first bus 1416 to a second bus 1420. In one
embodiment, one or more additional processor(s) 1415, such
as coprocessors, high-throughput MIC processors, GPG-
PU’s, accelerators (such as, e.g., graphics accelerators or
digital signal processing (DSP) units), field programmable
gate arrays, or any other processor, are coupled to first bus
1416. In one embodiment, second bus 1420 may be a low
pin count (LPC) bus. Various devices may be coupled to a
second bus 1420 including, for example, a keyboard and/or
mouse 1422, communication devices 1427 and a storage
unit 1428 such as a disk drive or other mass storage device
which may include instructions/code and data 1430, in one
embodiment. Further, an audio I/O 1424 may be coupled to
the second bus 1420. Note that other architectures are
possible. For example, instead of the point-to-point archi-
tecture of FIG. 14, a system may implement a multi-drop bus
or other such architecture.

Referring now to FIG. 15, shown is a block diagram of a
second more specific exemplary system 1500 in accordance
with an embodiment of the present invention. Like elements
in FIGS. 14 and 15 bear like reference numerals, and certain
aspects of FIG. 14 have been omitted from FIG. 15 in order
to avoid obscuring other aspects of FIG. 15.

FIG. 15 illustrates that the processors 1470, 1480 may
include integrated memory and I/O control logic (“CL”)
1472 and 1482, respectively. Thus, the CL 1472, 1482
include integrated memory controller units and include /O
control logic. FIG. 15 illustrates that not only are the
memories 1432, 1434 coupled to the CL 1472, 1482, but also
that 1/0 devices 1514 are also coupled to the control logic
1472, 1482. Legacy 1/O devices 1515 are coupled to the
chipset 1490.

Referring now to FIG. 16, shown is a block diagram of a
SoC 1600 in accordance with an embodiment of the present
invention. Similar elements in FIG. 12 bear like reference
numerals. Also, dashed lined boxes are optional features on
more advanced SoCs. In FIG. 16, an interconnect unit(s)
1602 is coupled to: an application processor 1610 which
includes a set of one or more cores 202A-N and shared cache
unit(s) 1206; a system agent unit 1210; a bus controller

10

15

20

25

30

35

40

45

50

55

60

65

28

unit(s) 1216; an integrated memory controller unit(s) 1214;
a set or one or more coprocessors 1620 which may include
integrated graphics logic, an image processor, an audio
processor, and a video processor; an static random access
memory (SRAM) unit 1630; a direct memory access (DMA)
unit 1632; and a display unit 1640 for coupling to one or
more external displays. In one embodiment, the
coprocessor(s) 1620 include a special-purpose processor,
such as, for example, a network or communication proces-
sor, compression engine, GPGPU, a high-throughput MIC
processor, embedded processor, or the like.

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combi-
nation of such implementation approaches. Embodiments of
the invention may be implemented as computer programs or
program code executing on programmable systems compris-
ing at least one processor, a storage system (including
volatile and non-volatile memory and/or storage elements),
at least one input device, and at least one output device.

Program code, such as code 1430 illustrated in FIG. 14,
may be applied to input instructions to perform the functions
described herein and generate output information. The out-
put information may be applied to one or more output
devices, in known fashion. For purposes of this application,
a processing system includes any system that has a proces-
sor, such as, for example; a digital signal processor (DSP),
a microcontroller, an application specific integrated circuit
(ASIC), or a microprocessor.

The program code may be implemented in a high level
procedural or object oriented programming language to
communicate with a processing system. The program code
may also be implemented in assembly or machine language,
if desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type
of disk including floppy disks, optical disks, compact disk
read-only memories (CD-ROMs), compact disk rewritable’s
(CD-RWs), and magneto-optical disks, semiconductor
devices such as read-only memories (ROMs), random
access memories (RAMs) such as dynamic random access
memories (DRAMs), static random access memories
(SRAMs), erasable programmable read-only memories
(EPROMs), flash memories, electrically erasable program-
mable read-only memories (EEPROMs), phase change
memory (PCM), magnetic or optical cards, or any other type
of media suitable for storing electronic instructions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, cir-

US 9,436,435 B2

29

cuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.

Emulation (Including Binary Translation, Code Morph-
ing, Etc.)

In some cases, an instruction converter may be used to
convert an instruction from a source instruction set to a
target instruction set. For example, the instruction converter
may translate (e.g., using static binary translation, dynamic
binary translation including dynamic compilation), morph,
emulate, or otherwise convert an instruction to one or more
other instructions to be processed by the core. The instruc-
tion converter may be implemented in software, hardware,
firmware, or a combination thereof. The instruction con-
verter may be on processor, off processor, or part on and part
off processor.

FIG. 17 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention.
In the illustrated embodiment, the instruction converter is a
software instruction converter, although alternatively the
instruction converter may be implemented in software, firm-
ware, hardware, or various combinations thereof. FIG. 17
shows a program in a high level language 1702 may be
compiled using an x86 compiler 1704 to generate x86 binary
code 1706 that may be natively executed by a processor with
at least one x86 instruction set core 1716. The processor with
at least one x86 instruction set core 1716 represents any
processor that can perform substantially the same functions
as an Intel processor with at least one x86 instruction set
core by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86
instruction set core or (2) object code versions of applica-
tions or other software targeted to run on an Intel processor
with at least one x86 instruction set core, in order to achieve
substantially the same result as an Intel processor with at
least one x86 instruction set core. The x86 compiler 1704
represents a compiler that is operable to generate x86 binary
code 1706 (e.g., object code) that can, with or without
additional linkage processing, be executed on the processor
with at least one x86 instruction set core 1716. Similarly,
FIG. 17 shows the program in the high level language 1702
may be compiled using an alternative instruction set com-
piler 1708 to generate alternative instruction set binary code
1710 that may be natively executed by a processor without
at least one x86 instruction set core 1714 (e.g., a processor
with cores that execute the MIPS instruction set of MIPS
Technologies of Sunnyvale, Calif. and/or that execute the
ARM instruction set of ARM Holdings of Sunnyvale,
Calif.). The instruction converter 1712 is used to convert the
x86 binary code 1706 into code that may be natively
executed by the processor without an x86 instruction set
core 1714. This converted code is not likely to be the same
as the alternative instruction set binary code 1710 because
an instruction converter capable of this is difficult to make;
however, the converted code will accomplish the general
operation and be made up of instructions from the alterna-
tive instruction set. Thus, the instruction converter 1712
represents software, firmware, hardware, or a combination
thereof that, through emulation, simulation or any other
process, allows a processor or other electronic device that
does not have an x86 instruction set processor or core to
execute the x86 binary code 1706.

10

15

20

25

35

40

45

50

55

60

65

30

What is claimed is:
1. A method comprising:
decoding a first instruction, a second instruction, a third
instruction, a fourth instruction, and a fifth instruction
with a hardware decoder of a hardware processor;

executing the first instruction with a hardware execution
unit of the hardware processor to multiply a first input
operand and a second input operand and present a
lower portion of a result, said first input operand
representing a first digit of a multiplier, said second
input operand representing a first digit of a multipli-
cand;

executing the second instruction with the hardware execu-

tion unit of the hardware processor to multiply said first
input operand and said second input operand and
present an upper portion of a result;

executing the third instruction with the hardware execu-

tion unit of the hardware processor to multiply said first
input operand and a third input operand and present a
lower portion of a result, said third input operand
representing a digit of said multiplicand that neighbors
said first digit of said multiplicand;

executing the fourth instruction with the hardware execu-

tion unit of the hardware processor to multiply said first
input operand and said third input operand and present
an upper portion of a result; and

executing the fifth instruction with the hardware execu-

tion unit of the hardware processor to add aligned digits
of the upper and lower portions and record a carry term
in a mask register.

2. The method of claim 1 wherein the first and second
instructions are executed in a same recursion.

3. The method of claim 1 wherein a multiplexer of said
hardware execution unit of the hardware processor is to
output a low half from a multiplier for the first instruction
and a high half from the multiplier for the second instruc-
tion.

4. The method of claim 1 wherein the carry term is one of
a plurality of carry terms that are separately tracked in mask
register space.

5. The method of claim 1 wherein said executing the fifth
instruction with the hardware execution unit of the hardware
processor is to also add in an input carry term from the mask
register.

6. The method of claim 1 wherein the carry term is more
than one bit.

7. The method of claim 6 wherein said carry term is
written as least significant bits of a next higher ordered
accumulated partial product term.

8. A hardware processor comprising:

a hardware decoder to decode a first instruction, a second

instruction, and an add instruction; and

a hardware execution unit to:

execute the first instruction to multiply a first input
operand and a second input operand and present a
lower portion of a result, said first and second input
operands being respective elements of first and sec-
ond input vectors,

execute the second instruction to multiply the first input
operand and the second input operand and present an
upper portion of a result, said first and second input
operands being respective elements of first and sec-
ond input vectors, and

execute the add instruction that is to add aligned digits
of the upper and lower portions and cause a carry
term of said add instruction’s adding to be recorded
in a mask register.

US 9,436,435 B2

31

9. The hardware processor of claim 8 wherein said add
instruction comprises an operand to identify the mask reg-
ister.
10. The hardware processor of claim 8 wherein the carry
term is a plurality of bits.
11. The hardware processor of claim 8 wherein said add
instruction accepts an input carry term through said mask
register.
12. The hardware processor of claim 11 wherein said add
instruction writes said input carry term as least significant
bits of its add resultant.
13. The hardware processor of claim 8 wherein a multi-
plexer of said hardware execution unit is to output a low half
from a multiplier for the first instruction and a high half from
the multiplier for the second instruction.
14. The hardware processor of claim 8 wherein said first
and second instructions are vector instructions that multiply
respective elements of first and second input vectors, said
first input operand being an element of said first input vector
and said second input operand being an element of a second
input vector.
15. The hardware processor of claim 8, wherein the carry
term is one of a plurality of carry terms that are separately
tracked in mask register space.
16. A non-transitory machine readable medium containing
program code that when processed by a processing unit
causes a method to be performed, said method comprising:
decoding a first instruction, a second instruction, a third
instruction, a fourth instruction, and a fifth instruction
with a hardware decoder of a hardware processor;

executing the first instruction with a hardware execution
unit of the hardware processor to multiply a first input
operand and a second input operand and present a
lower portion of a result, said first input operand
representing a first digit of a multiplier, said second
input operand representing a first digit of a multipli-
cand;

executing the second instruction with the hardware execu-

tion unit of the hardware processor to multiply said first

15

30

32

input operand and said second input operand and
present an upper portion of a result;

executing the third instruction with the hardware execu-

tion unit of the hardware processor to multiply said first
input operand and a third input operand and present a
lower portion of a result, said third input operand
representing a digit of said multiplicand that neighbors
said first digit of said multiplicand;

executing the fourth instruction with the hardware execu-

tion unit of the hardware processor to multiply said first
input operand and said third input operand and present
an upper portion of a result; and

executing the fifth instruction with the hardware execu-

tion unit of the hardware processor to add aligned digits
of the upper and lower portions and record a carry term
in a mask register.

17. The non-transitory machine readable medium of claim
16 wherein the first and second instructions are executed in
a same recursion.

18. The non-transitory machine readable medium of claim
16 wherein a multiplexer of said hardware execution unit of
the hardware processor is to output a low half from a
multiplier for the first instruction and a high half from the
multiplier for the second instruction.

19. The non-transitory machine readable medium of claim
16 wherein the carry term is one of a plurality of carry terms
that are separately tracked in mask register space.

20. The non-transitory machine readable medium of claim
16 wherein said executing the fifth instruction with the
hardware execution unit of the hardware processor is to also
add in an input carry term from the mask register.

21. The non-transitory machine readable medium of claim
16 wherein the carry term is more than one bit.

22. The non-transitory machine readable medium of claim
21 wherein said carry term is an input carry term and said
input carry term is written as least significant bits of said
adding’s resultant.

